

 Page: 1

28.05.2014

Command Interface Guide
Avisaro 2.0 Product Series

“API”

Version / Date 2014-05-28

 Page : 2 28.05.2014

1 TABLE OF CONTENT

2 This Document .. 6

2.1 Links .. 6

2.2 Related documents ... 6

2.3 History ... 6

3 Introduction .. 7

4 Usage: Command Interface (“API”) vrs. Scripting (“Apps”) .. 7

5 Interfaces .. 8

5.1 Using RS232, RS485 or RS422 interfaces .. 9

5.1.1 Activating RS232 interface ... via web interface ... 9

5.1.2 Activating and configuration of RS232 interface 'Port 2' (auxiliary) ... via SD card 11

5.2 Using CAN Interface .. 12

5.3 Using I2C interface .. 12

5.3.1 Setup and configuration .. 13

5.3.2 Activating I2C Slave interface ..via Web ... 13

5.3.3 Configuring I2C Slave interface ... 14

5.3.4 Activating and configuration of I2C interface (Master) .. via SD Card 15

6 Doing Things – Examples ... 16

6.1 Working with TCP connections ... 16

6.1.1 Open TCP connections .. 16

6.1.2 Sending and receiving data ... 17

6.1.3 Closing TCP/IP connection .. 17

6.1.4 Example: Listening for incoming TCP connection ... 18

7 Doing Things – Example for file handling .. 18

7.1 Reading existing files ... 19

7.2 Creating and writing files .. 20

8 Doing Things – example setting the cock .. 22

9 Details ... 23

9.1 Power saving modes ... 23

9.2 Handles ... 24

9.3 Multitasking .. 24

10 Text Commands .. 25

10.1 Upload - How it works ... 25

10.2 APPD .. 26

10.3 ARP .. 26

 Page: 3

28.05.2014

10.4 BC .. 27

10.5 BIND .. 28

10.6 CAN / CAN ERRLOG / CAN? ... 29

10.7 CANEXT.. 33

10.8 CANFLT .. 34

10.9 CLOSE .. 35

10.10 CMDS ... 35

10.11 CONNECT ... 36

10.12 CSTAT?... 37

10.13 DEL .. 38

10.14 DIR ... 39

10.15 DNS .. 39

10.16 ECHO ... 40

10.17 ERR? .. 40

10.18 ERRORS? .. 41

10.19 ETH .. 42

10.20 ETH? .. 43

10.21 FSTAT ... 43

10.22 FSYNC .. 44

10.23 FTP ... 45

10.24 GSM ... 45

10.25 GSM? ... 47

10.26 HTTP .. 47

10.27 HTTP? .. 48

10.28 ICC ... 48

10.29 I2C?.. 49

10.30 IP ... 49

10.31 IP? .. 51

10.32 LIST .. 52

10.33 LISTEN .. 52

10.34 LOAD ... 53

10.35 LOADFW .. 54

10.36 MKDIR ... 54

10.37 MOVE .. 55

10.38 NAME .. 56

10.39 NET .. 56

 Page : 4 28.05.2014

10.40 NET? .. 57

10.41 NEW .. 58

10.42 OPEN ... 58

10.43 OPEN? ... 59

10.44 PING .. 59

10.45 PORT .. 60

10.46 POS .. 62

10.47 PROGFW .. 63

10.48 PROMPT .. 63

10.49 PROT .. 64

10.50 READ .. 65

10.51 RECM ... 65

10.52 RECM? ... 66

10.53 RESTART .. 67

10.54 RS... 67

10.55 RS232 .. 68

10.56 RS232 ERRLOG .. 69

10.57 RS232? ... 70

10.58 RUN ... 70

10.59 SCAN .. 71

10.60 SLEEP ... 72

10.61 SMS ... 72

10.62 SOCKIO .. 73

10.63 SOCKIO? .. 74

10.64 SPI .. 74

10.65 SPI? .. 75

10.66 SSTAT ... 75

10.67 STPSEQ .. 78

10.68 SHED .. 80

10.69 SHED? .. 80

10.70 UDP ... 82

10.71 UPTIM? .. 83

10.72 VER? .. 83

10.73 WEB ... 83

10.74 WLAN .. 84

10.75 WLAN? ... 86

 Page: 5

28.05.2014

10.76 WPS ... 87

10.77 WRITE .. 88

10.78 WS ... 88

 Page : 6 28.05.2014

2 THIS DOCUMENT

2.1 LINKS

Please check for the most current update of this document here:

German: www.avisaro.de/de/20-Datenlogger-Dokumente.html

English: http://www.avisaro.com/en/20-data-logger-documents.html

2.2 RELATED DOCUMENTS

Please check for other documents here:

German: www.avisaro.de/de/20-Datenlogger-Dokumente.html

English: http://www.avisaro.com/en/20-data-logger-documents.html

2.3 HISTORY

http://www.avisaro.de/de/20-Datenlogger-Dokumente.html
http://www.avisaro.com/en/20-data-logger-documents.html
http://www.avisaro.de/de/20-Datenlogger-Dokumente.html
http://www.avisaro.com/en/20-data-logger-documents.html

 Page: 7

28.05.2014

3 INTRODUCTION

Avisaro 2.0 products have a build-in command

interface. This command interface allows to

control the functions of the product: start a

connection, store data into a file and change the

configuration. The commands are entered using

the Data Interface (RS232, SPI, I2C, ...). The

format of the command is either plain ASCII or

alternatively a compact binary format.

The Command Interface allows to type and send

commands in ASCII format. For example, a

RS232 product is connected with a terminal

program on a PC, one can communicate by

typing in commands and by reading the answer on the terminal. The command interface is available

on all physical interfaces (CAN, SPI, I2C, ...).

The Command Interface allows to:

 Open and control TCP or UDP connections

 Send data through those connections

 Open and control files on the SD card

 Store and retreive data from SD card

 Change configuration settings

4 USAGE: COMMAND INTERFACE (“API”) VRS. SCRIPTING (“APPS”)

There are two main methods to operate the Avisaro 2.0 product:

The Command Interface (Mehr more) allows to send commands from an external unit. This unit is

typically a SPS control or a micro controller. Most commands can be send in an easy to read ASCII or

compact binary format. Commands exists to ...

 Read and write data on SD cards

 Establish connections and share data through WLAN and LAN

 Configure the product and check status

The Scripting Engine (Mehr more) allows to have the Avisaro 2.0 product perform functions on a self

sustained basis. The engine is designed to perform small tasks rather than large scale applications.

Scripts are stored in internal flash and executed upon power up. Structures exists to ...

 Read and write data on SD cards

 Establish connections and share data through WLAN and LAN

 Parse and reformat data

 Page : 8 28.05.2014

 Control I/O ports, PWM and analog input

 Do if-then-else, do-loops, for-next, gosub-return,.... structures

Decision matrix:

Application BASIC

Scripting

Command

Interface

Details

Send one datastream from

A to B through WLAN

√ Ready to use scripts are available.

Connection handling is done by Avisaro,

user simply sends data.

Send several parallel

datastreams from A to B

 √ A SPS or micro controller sends or retrieves

data to several server. Commands are send

to control connections.

Store datastream into file √ Ready to use scripts are available. File

handling is done by Avisaro, user simply

sends data.

Poll sensor and store data

into file

√ Scripting is powerfull enough to poll a

sensor through i.e. rs232, i2c, ..., than

format data and store data into file. No

aditional controller is needed.

High Speed Data √ For high performance applications, the

"packet commands" in binary form is used.

Note:

Avisaro 2.0 "Box" and "Cube" products are shipped with pre-installed Scripts. Those Scripts can be

changed to perform a different funciton or they can be disabled to use the command interface.

Avisaro 2.0 "Modules" are shipped with no Script installed.

5 INTERFACES

The Avisaro 2.0 products come with the capability to work with different interfaces and protocolls.

Which interface can be used depends widely on the product purchased. Within the "Box" and

"Cube" product series, only certain interfaces are routed to the connector.

The Avisaro 2.0 Module has all the interfaces routed to its pins - however due to pin multiplexing,

not all interfaces are available at the same time. Be aware, that some interfaces require external

components to comply with the signal levels (this is only true for the module, "Box" and "Cube" are

"ready-to-use").

 Page: 9

28.05.2014

Summary:

 RS232: Avisaro supports all the baudrates - up to about 1Mbit - and all the typical settings

such as flow control.

 CAN:

 I2C:

 SPI:

 I/O, analog:

5.1 USING RS232, RS485 OR RS422 INTERFACES

The command interface is available on RS232 interface port 1. The second RS232 interface is

available within the scripting language. See tl_files/dynamic_dropdown/link.gif here for details on

RS232 within scripting.

Setup and configuration

Activating and configuration of RS232 interface (Primary)

The RS232 port 1 is designed to receive user data as well as commands adressed to configure the

Avisaro product.

For all Avisaro RS232 Data Logger and Avisaro RS232 WLAN products, the RS232 interface is already

activated and operates with default values (see below). Change baudrate and filter settings using the

web interface or SD memory card.

If a Avisaro Module product was purchased or after a 'reset to factory settings' command, the RS232

interface is activated by default.

5.1.1 Activating RS232 interface ... via web interface

Module Name

The text entered in this field shows up in the top left

corner of the web site. It has no functional meaning, but

can be used to distinguish between modules.

Data Interface

Selects the active data interface. This is the main

interface for the module. Through this interface the

Avisaro device receives commands or sends out messages. Or, through this interface data is

send and received to be stored or forwarded wirelessly.

 Page : 10 28.05.2014

RS232/RS485: Sets primary RS232 or RS485 or RS422 interface

IIC: Interface is set to IIC (= I2C) slave. See Mehr here for I2C master settings

SPI: SPI slave

CAN: Sets primary CAN interface

Ethernet: Sets to raw ethernet interface. For experts only.

TCP Socket: Sets to TCP socket interface

None: No interface is active

File: Outputs are written into a file.

Network Interface

The valid network interface option depend on the type of interface connected to the Avisaro

device

WLAN: Only the wireless LAN interface is active (if present)

Ethernet: Only the LAN interface is active (if present)

None: No network interface becomes active (even if present)

Automatic: The network interface is automatically selected. The search is processed in the

order 1) WLAN 2) LAN

Both: Both interfaces - WLAN and LAN - are active (if present)

Recovery Mode

There is a special feature to access a Avisaro device through a network interface, even if

settings are messed up. See Mehr here for details.

Scheduling Frequency

Avisaro system runs on a multitasking system. This setting defines the time in milliseconds

each task is assigned. Setting '0' sets this value to 'dynamic'. The recommended value is '0'.

IP Bridging

If there are two network interfaces, the Avisaro module can work as a bridge between those

two. Thus, network traffic is routed from one to the other interface.

SD/MMC Support

The SD card slot requires periodic processing resources even if no card is inserted. If no SD

card slot is present, the 'SD Support' should be disabled.

Reboot Device

 Page: 11

28.05.2014

This reboots the device. Quite a few changes require a reboot in order to become effective.

Factory Settings

This resets all customer settings to default values. All entries such as selected data interface,

WLAN and IP settings are reset. The stored script remains stored, however the automatic

execution upon startup is disabled.

Configuring RS232 interface

Baud Rate

Valid rates: 300, 1200, 2400, 4800, 9600, 19200, 38400,

57600, 115200, 230400, 460800

Character Size

Number of bits: 5, 6, 7, 8

Parity

Parity: odd, even, none

Stop Bits

Stop bits: 1, 2

Flow Control

Flowcontrol: none, Xon/Xoff (=SW), RTS/CTS (=HW)

Interface Mode

RS232: This must be one of the keywords RS485

RS485: In RS485 mode, a transceiver chip must be connected that handles the physical bus.

Therefore, the module automatically toggles a control line that most chips need to switch

from RX to TX and vice versa. If RS485 is given, the Module drives the DTR control line from

LOW to HIGH while sending.

RS485 Inverse: When RS485INV is given, that control line behaves inversely, that is, it goes

from HIGH to LOW while sending.

5.1.2 Activating and configuration of RS232 interface 'Port 2' (auxiliary) ... via SD card

The RS232 port 2 is designed to be used in scripting language only. There is no access to the auxiliary

port within the command interface.

Working with RS232 data interface

 Page : 12 28.05.2014

Enter data

The RS232 command interface is well suited to be used with a terminal program. This way it is easy

to try commands and see their results. Just as well, a micro controller or a SPS unit can communicate

with using the RS232 interface.

Typically, the text (ASCII) version of the commands are used. This makes the commands and the

responces readable to the user.

To enter a command, simply type in the command followed by a carriage return and new line:

 > time?

 2009/01/10 15:31:12

 >

This "time?" command reads out the current time of the module, followed by the prompt. The list of

all commands can be found Mehr here.

5.2 USING CAN INTERFACE

Commands are only accepted by the Avisaro device if the script is switched off.

The format is a standard CAN message. As CAN ID use the 49. The command must be written in HEX

taking 8 letters per CAN message.

Each command line must be terminated with a CR and Line-feed - in HEX: 0D 0A. It is important that

the last line is finalized like that as well. Othwise the command will not be accepted.

5.3 USING I2C INTERFACE

 Page: 13

28.05.2014

The command interface is available on the I2C interface. This interface is not the default interface,

thus it needs to be activated once after receiving the module.

5.3.1 Setup and configuration

Activating and configuration of I2C interface (Slave)

The I2C is designed to receive user data as well as commands adressed to configure the Avisaro

product. The interface is working as a slave device.

Activate and configure the I2C interface either through the build-in configuration web site or

through SD-Card:

5.3.2 Activating I2C Slave interface ..via Web

Module Name

The text entered in this field shows up in the top left

corner of the web site. It has no functional meaning, but

can be used to distinguish between modules.

Data Interface

Selects the active data interface. This is the main

interface for the module. Through this interface the

Avisaro device receives commands or sends out messages. Or, through this interface data is

send and received to be stored or forwarded wirelessly.

RS232/RS485: Sets primary RS232 or RS485 or RS422 interface

IIC: Interface is set to IIC (= I2C) slave. See Mehr here for I2C master settings

SPI: SPI slave

CAN: Sets primary CAN interface

Ethernet: Sets to raw ethernet interface. For experts only.

TCP Socket: Sets to TCP socket interface

None: No interface is active

File: Outputs are written into a file.

Network Interface

The valid network interface option depend on the type of interface connected to the Avisaro

device

WLAN: Only the wireless LAN interface is active (if present)

Ethernet: Only the LAN interface is active (if present)

None: No network interface becomes active (even if present)

 Page : 14 28.05.2014

Automatic: The network interface is automatically selected. The search is processed in the

order 1) WLAN 2) LAN

Both: Both interfaces - WLAN and LAN - are active (if present)

Recovery Mode

There is a special feature to access a Avisaro device through a network interface, even if

settings are messed up. See Mehr here for details.

Scheduling Frequency

Avisaro system runs on a multitasking system. This setting defines the time in milliseconds

each task is assigned. Setting '0' sets this value to 'dynamic'. The recommended value is '0'.

IP Bridging

If there are two network interfaces, the Avisaro module can work as a bridge between those

two. Thus, network traffic is routed from one to the other interface.

SD/MMC Support

The SD card slot requires periodic processing resources even if no card is inserted. If no SD

card slot is present, the 'SD Support' should be disabled.

Reboot Device

This reboots the device. Quite a few changes require a reboot in order to become effective.

Factory Settings

This resets all customer settings to default values. All entries such as selected data interface, WLAN

and IP settings are reset. The stored script remains stored, however the automatic execution upon

startup is disabled.

5.3.3 Configuring I2C Slave interface

There is only one setting to be made:

I2C Slave Address: Enter the slave address for the Avisaro unit on

the I2C bus. Values are entered in decimal.

 Page: 15

28.05.2014

5.3.4 Activating and configuration of I2C interface (Master) .. via SD Card

The I2C port in Master configuration is only available within Scripting. See Mehr here for details.

Working with I2C data interface

Enter data

For the I2C interface, commands can be entered in text (ASCII) form as well as in packet mode

(binary):

Commands send in text (ASCII) mode

To send a command, perform a I2C write to the Avisaro module on the bus (by default it is address

73 decimal). Send the command (like "time?") by sending the ASCII values: 0x74, 0x69, 0x6d, 0x65,

0x3f . The command needs to be terminated with a carriage return: 0x0d, 0x0a . Finish the I2C

communication with a I2C 'stop' sequence.

To read the answer, perform a I2C read to the Avisaro module. The module will return 0xFF if no

valid answer can be read. Keep on reading until valid text (ASCII) character are read. Finish the I2C

read when all characters are read - to be recognized at a 0xFF after the last 0x0d 0x0a.

It is required to read the answer, otherwise the module will be blocked by unread answeres.

Commands send in packet (binary) mode

Typically, the I2C is used in a micro controller environment. The Avisaro module supports a simple

packet mode which is well suited for this environment. See Mehr here for more details.

The procedure is to perform a I2C write sending the packet to the Avisaro module. To read the

answer (required) perform a I2C read and get the answer - also in packet form.

 Page : 16 28.05.2014

6 DOING THINGS – EXAMPLES

6.1 WORKING WITH TCP CONNECTIONS

This chapter describes how to open and manage a TCP connection using the command interface. For

example, a external micro controller opens a TCP channel and sends data. There are a couple of text

commands to manage a TCP connection. Whether to use text or binary commands is up to the user -

whatever is more comfortable.

See (Mehr here) to get details on how open and manage a TCP connection automatically using

scripting. For example, a sensor simply sends data but can't be modified to send commands.

TCP/IP fundamentals

This document assumes you are familiar with TCP/IP fundamentals. For further information on

TCP/IP please search the internet or follow the external links:

Wikipedia: TCP/IP (Mehr more)

PDF state diagram (Mehr more)

6.1.1 Open TCP connections

A TCP connection can be established two ways:

1.) Waiting for a incoming connection (Avisaro is TCP server)

Use the text command "LISTEN" (Mehr more) or the binary command "PCMD_NET_LISTENTCP"

(Mehr more) to create a 'TCP socket' in listen mode. Specify a internal 'handle' number - this handle

number adresses this TCP socket. Also specify a TCP port number.

2.) Connection to a server (Avisaro is TCP client)

Use the text command "CONNECT" (Mehr more) or the binary command "PCMD_NET_CONNTCP"

(Mehr more) to actively connect to a TCP server. Specify a internal 'handle' number, the other TCP

adress and port number.

Once the TCP socket with its handle number is declared, you can query the module whether the TCP

connection was established successfully. There a different strategies to do so:

1) Listen/Connect and Wait: The "LISTEN" and "CONNECT" command offer the optional parameter

"WAIT". When this parameter is used, the command returns when the connection was established.

Use this option together with the Listen command with care, since the module waits forever with no

connection being established. For connect there is a timeout.

 Page: 17

28.05.2014

2) Checking handle status: Using the text command "SSTAT" (Mehr more) or the binary

"PCMD_NET_SSTAT" (Mehr more) one can check the status of the TCP socket. This method is the

cleanest, but it requires some parsing of the status responce.

3) Polling with stream command: The command "STREAM" (Mehr more) is usually used to start data

transmission. When the connection is not established yet, this command returns an error. It turns

out to be pratical to use this command to do two things at a time: start data transmission / receiving

when this command returns positive, otherwise wait and try later again.

6.1.2 Sending and receiving data

Once the connection is established, it can be used to send and receive data.

Sending data using text command "STREAM":

The "STREAM" command (Mehr more) redirects inputs to be send to the TCP connection. So all data

(RS232, CAN, SPI, I2C, ..) are send to the TCP partner. All data received through the TCP connection

can be received using the data connection. It is required to read those data from the Avisaro product

- otherwise buffer fill up and the connection stalls.

The STREAM command allows data to be send only over one TCP connection.

To switch back to issue commands, use the Stop Sequence (Mehr more). By default, this is "+++" -

but can also be changed. Make sure the stop sequence does not appear in the data stream.

Sending data using binary commands "PCMD_NET_PUTPACKET" and "PCMD_NET_GETPACKET":

The binary send and receive commands are more powerfull since more than one connection can be

served and it is easier to switch between commands and data. The drawback is the formatting efford

for those commands. Use "PCMD_NET_PUTPACKET" (Mehr more) to send data and the

"PCMD_NET_GETPACKET" (Mehr more) to receive data.

6.1.3 Closing TCP/IP connection

When done with sending and receiving data, the TCP connection can be closed.

Closing using text command "CLOSE":

The "CLOSE" command (Mehr more) closes the TCP connection. Use the handle number to specify

which connection should be closed.

Closing using binary command "PCMD_FCLOSE":

 Page : 18 28.05.2014

The binary command "PCMD_FCLOSE" (Mehr more) closes the TCP connection. Use the handle

number to specify which connection should be closed.

6.1.4 Example: Listening for incoming TCP connection

This example is using text commands to start listening for an incoming connection, sending some

data and finally closing the connection again. This example works for any data interface (RS232, CAN,

I2C, SPI, ...):

Send from your application Send from Avisaro device Comment

listen 101 23 Set socket with handle number 101 to

listen on port 23

 >

stream 101 Try to establish stream to send data.

 ERR 28

>

This error is expected since

connection is not established yet.

 stream 101

 ERR 28

>

 ... still not established.

stream 101 Oh, good - no error - connection is

established

THIS DATA WAS SEND FROM

SERVER TO AVISARO

 Data is send back ...

 THIS DATA WAS SEND FROM

AVISARO TO THE SERVER

... and forth.

+++ Sending stop sequence to return to

command mode

 >

close 101 Close connection

 >

Some details:

 The ">" is the return prompt of the Avisaro module. Each > is headed by a <cr> <lf>. It can be

changed i.e. to "OK" if so desired

 All commands are terminated by <cr> <lf> ("enter") - this is not shown expliciately here

7 DOING THINGS – EXAMPLE FOR FILE HANDLING

 Page: 19

28.05.2014

Files can be handled just like using a command line shell on a regular computer. There's a DIR

command that can be used to list all files in a directory. Simple open, read and write operations are

possible by hand or may be invoked by any device that is connected to the I/O interface.

The following is a short tutorial that shows how to read and write files on SD card. If you want to

work through it, please create a file on a FAT16/32 formatted card (by using a PC or something like

that), name it "hello.txt" and insert it into the SD slot of your Avisaro-Module. The file should contain

a single line: "the_quick_brown_fox_jumps_over_the_lazy_dog". You need also a terminal

connected to the I/O interface of the Avisaro Module. In case of RS232, you may find this tool useful.

7.1 READING EXISTING FILES
Suppose there's a SD-card inserted that has a file named "hello.txt" in its main directory. To open it

for reading and get all its content, can simply be done with two commands:

open 1 hello.txt

stream 1

After that, the module transmits the entire file content to your terminal:

the_quick_brown_fox_jumps_over_the_lazy_dog

Please note the 1 before the file name. This is something called a "File Handle". File handles are used

to identify and access files after they were opened. You will see that the 1 from here is used in all

subsequent file commands.

Often, it is more practical to read files chunk by chunk than getting all that stuff as a whole. This can

be done with the READ command. Note that we first must close the file, before we can open it again.

close 1

open 1 hello.txt

read 1 9

After that, you get only the first nine charcters, which are:

the_quick

To read the next two words, invoke READ again:

read 1 10

And this is what you get:

_brown_fox

So to say, calling READ again and again moves the internal "File Pointer" towards the end, until

there's nothing more to read. Try it yourself and see what happens. Tip: if ERR33 appears, type ERR?

By the way, the file pointer not only moves automatically on READs. There's a command called POS

that you can use to set the file pointer to any position in the file. Try this:

 Page : 20 28.05.2014

pos 1 20

read 1 10

And you will see:

jumps_over

POS has moved the file pointer to the 20th position, so reading 10 characters from there gives you

the output above.

Finally, when we're ready, a file should be closed using the CLOSE command (we already done that

before). Closing files frees all ressources associated with them and, in case of writing, ensures that

cached data is flushed to disk. So, do it now:

close 1

7.2 CREATING AND WRITING FILES
Now that you know how to open and read files, this part of the tutorial shows you how to create

new files and put data into them. First we must create a new file on disk. Let's do this, we create a

new file named "myfile.txt":

new 1 myfile.txt

This creates a new file and also opens it for writing. If you get an ERR27, you possibly forgot to close

the file used by the previous section, which also uses file handle #1, type CLOSE 1 and then try again.

Invoke DIR to see what's on your SD card:

dir

The output should be:

myfile.txt 0

hello.txt 43

Don't worry if output on your module appears in reverse order, the DIR command reads the file

system structures directly and doesn't sort what it finds. It's more essential that you see the new file

"myfile.txt" with zero length. That's the file you created just now.

As mentioned before, the file is already open. To write data data into it, simply enter streaming

mode:

stream 1

Everything you type, after this command, is written to the file. Now type the this (only the six

characters without return):

123456

After that type three plus signs:

+++

As you may notice, immediately after the third + the Module prompt (usually a >) appears to

indicate that the module has left streaming mode and entered command mode again. The sequence

 Page: 21

28.05.2014

of three pluses is the module's so-called "stop sequence". It is also used in other situations, where it

must be possible to leave data mode.

As a contrast to reading, it is inherently important to close a file after you're done with write

operations. If you miss that, it's most likely that not all data is written to disk. So let's do it:

close 1

Now assume that six bytes, the characters 123456 are written into the file, you may satisfy yourself.

Type:

dir

...and verify that the output looks like:

myfile.txt 6

hello.txt 43

Myfile.txt contains six bytes, is it true? Ok, then let's append some more data. For this to work, we

must open "myfile.txt" again but in this case, we need a special command that opens an existing file

for writing and moves the file pointer to the end. The command is named APPD, let's do it:

appd 1 myfile.txt

The file is opened again. Now we introduce another command that can be used to write data into a

file. Differently from streaming mode, this command writes all of its second argument into the filel.

Just see how simple it is:

write 1 abcdef

That's all we need to put the characters "abcdef" at the end of the file. Let's close the file and see

the directory:

close 1

dir

The output now should look like this, "myfile.txt" must be six bytes bigger:

myfile.txt 12

hello.txt 43

Finally, make sure the file content is really that what you assume. You can easily verify that by

showing the entire file (as you learned from the first section):

open 1 myfile.txt

stream 1

Do you see "123456abcdef", right?

That's all!

 Page : 22 28.05.2014

8 DOING THINGS – EXAMPLE SETTING THE COCK

How to set the clock

Description

The Avisaro Devices own an integrated clock. For all "Box" and "Cube" products, the RTC is battery

backed, thus it keeps the time even if power is disconnected. Delivering the device the time is set.

The "Modules" requires external supply to hold time.

With WLAN / LAN

If your device has got an WLAN or LAN interface you can set the time most easily via the

administration page.

Enter the adminstration webpage - chose the menu 'clock' and set the time.

Via SD Card

To set the time create a file names autotun.txt and save it at a SD card. The file shall contain the

command time in a format as descript here. Press the Enter-key at the end of the line.

TIME requires six arguments separated by spaces in the following order:

Year: 2000...2099

Month: 1...12

Day: 1...31

Hour: 0...23

Minute: 0...59

Second: 0...59

Example

TIME 2008 10 20 12 13 14

Sets the RTC date to 2008/10/20 and time to 12:13:14

 Page: 23

28.05.2014

Insert the SD card into the data logger and restart the data logger at the time and second mentioned

in the autorun.txt. The data logger will set the clock to the mentioned time.

Please do not forget to remove the file from the SD card afterwards to avoid wrong time setting

afterwards.

Via data interface

To set the time via data interface you have to disable the script first. Then the time can be set with

the command 'time'.

Afterwards the script must be restarted.

9 DETAILS

9.1 POWER SAVING MODES

Introduction

The Avisaro Modules supports three power saving modes, one for the main controller and two for

WLAN unit. All of them can be combined.

Putting the main controller asleep

Send a SLEEP command over the I/O interface to freeze the MCU so that it consumes very little

power. The sleep can be time-controlled, this means the MCU awakes after a specific time, or it can

sleep forever until it detects a pulse on its wakeup-pin. Please look here for further information.

Switching the WLAN unit off and on

Send WLAN SLEEP NOW over the I/O interface to switch the WLAN unit off. If can later be switched

on again by the WLAN AWAKE NOW command. Please look here for further information.

Running WLAN in power save mode

The WLAN unit is able to save energy while being fully functional. To bring the WLAN into power

save mode, use either the WLAN command (see here), or activate the checkbox on the web page.

 Page : 24 28.05.2014

9.2 HANDLES

All resources (files, TCP or UDP connections) are addresses by handles. A handles is a number which

is given uniquely to one resource. The numbers are controlled by the user, but have to be from the

range:

1..100 file handles

101 …200 TCP handles

201 …300 UDP handles

Example: the command “open 1 text.txt” opens a file for reading. The parameter 1 is the handle. All

following operations use the same handle: “close 1” closes the file again. The handle concept is

powerful, since parallel operations are possible.

9.3 MULTITASKING

The Avisaro 2.0 products are powered by a multitasking operating system. Thus, functions like

scripting and command interface run parallel.

 Page: 25

28.05.2014

10 TEXT COMMANDS

10.1 UPLOAD - HOW IT WORKS

In the opposit to scripting the command face is not used in a little program but given directly to the

device.

Basically there are three ways of sending the command:

via SD card: Write the commands in the autorun.txt, place it on the SD card and boot the device by

connecting it with power

via web browser: call for the page http:\\ [ip-address] \cmd

via interface: if the script is deactivated the commands can be send via interface like RS232, CAN or

I2C

 Page : 26 28.05.2014

10.2 APPD

APPD

Description Opens a file for writing and sets the file pointer behind the last byte, therewith,
subsequent write operations can append data to the end of the file
The first argument is an arbitrary number in the range from 1 to 100, that is used
as file handle.
The second argument must be the name of an existing file.

Parameters This command needs 2 arguments
 1. A file handle
 2. The name of a file

Return value ERR_OK (0) - if command is accepted
ERR_ARGUMENT (4) - if there's a problem with the arguments
ERR_ID_USED (27) - if the given file handle is already in use
ERR_FILE_OPEN (32) - if the file is already open
ERR_FIL_EXHAUSTED (26) - if the system can't allocate a new file control block
ERR_FR_XXX (13...25) - on internal file system errors

Example APPD 1 hello.txt

Remarks This command only exists on modules with storage functionality (such as SD-card
or USB frash drive).

10.3 ARP

ARP

Description This command can be used to query the internal ARP table and to delete all of its
entries. ARP means Address Resolution Protocol, which is a protocol that provides
mapping from IP- to Ethernet-Adresses. The ARP? command prints out one or
more lines, including the broadcast address. Each line shows six hexadecimal
numbers separated by colons, a hyphen and four decimal numbers separated by
dots. The part before the hyphen is the Ethernet-Address and that after the
hyphen is the corresponding IP-Address. The ARP CLEAR command simply deletes
all stored ARP entries, this means, that the module issues an ARP query to get the
MAC address of the recipient, before the next IP packet can be sent.

Parameters There are two version
 ARP? Lists the ARP table
 ARP CLEAR Clears the table

Return value ARP?: The output is always ERR_OK (0).
ARP: ERR_OK(0) or ERR_ARGUMENT(4) if the argument is not CLEAR

Example >

<

ARP?

ff:ff:ff:ff:ff:ff - 255.255.255.255

0:c:41:9d:2f:62 - 192.168.0.1

 Page: 27

28.05.2014

Remarks ARP and ARP? are only available on module that have a network interface (such
as WLAN or Ethernet)

10.4 BC

BC

Description This command can be used to query the last crash information. Like any complex
computer system, the Avisaro Module can probably crash due to bugs in the
firmware or faulty BASIC scripts. If such breakdown occurs, the module stores
crash information into battery powered RAM and re-starts itself. If crash
information is available, BC? outputs a line containing seven parts separated by
spaces. These are, from left to right:

1. Exception Reason
PRE -- Instruction fetch memory abort. The processor tried to execute
code at an undefined address.
DAT -- Data access memory abort. The processor tries to read from or
write to an undefined address.
UND -- Undefined instruction. The processor tried to decode an
instruction that is not part of the ARM7 instruction set.
BRW -- Brown out. Low peak of supply voltage below 2.95V.
Processor state when exception happened
ARM -- The processor was in ARM state.
TMB -- The processor was in THUMB state.

2. Processor mode when exception happened
USR -- The processor was in normal "user" mode.
FIQ -- The processor was executing a fast interrupt routine.
IRQ -- The processor was executing a general interrupt routine.
SUP -- The processor was in "supervisor" mode.
ABT -- The processor emulates virtual memory. (not used)
UND -- The processor emulates code for a co-processor. (not used)
SYS -- The processor was in "system" (highest privilege) mode.

3. Date when exception happened
4. Time when exception happened
5. The value of the instruction pointer when exception happend

This is a hexadecimal value without leading zeros.
6. The value of the status register when exception happend

Also a hex value without leading zeros

Parameters <none>

Return value The return value is always ERR_OK (0)

Example >

<

BC?

BRW ARM SUP 2008/01/01 22:46:20 13a14 60000013

 Page : 28 28.05.2014

Remarks Exception information is only stored among power on/offs if the module has a
battery (usually used to keep the RTC running). When a crash occurs, the module
reboots.

10.5 BIND

BIND

Description This command can be used to query the internal ARP table and to delete all of its
entries. ARP means Address Resolution Protocol, which is a protocol that provides
mapping from IP- to Ethernet-Adresses. The ARP? command prints out one or
more lines, including the broadcast address. Each line shows six hexadecimal
numbers separated by colons, a hyphen and four decimal numbers separated by
dots. The part before the hyphen is the Ethernet-Address and that after the
hyphen is the corresponding IP-Address. The ARP CLEAR command simply deletes
all stored ARP entries, this means, that the module issues an ARP query to get the
MAC address of the recipient, before the next IP packet can be sent.

Parameters There are two version
 ARP? Lists the ARP table
 ARP CLEAR Clears the table

Return value ARP?: The output is always ERR_OK (0).
ARP: ERR_OK(0) or ERR_ARGUMENT(4) if the argument is not CLEAR

Example >

<

ARP?

ff:ff:ff:ff:ff:ff - 255.255.255.255

0:c:41:9d:2f:62 - 192.168.0.1

Remarks ARP and ARP? are only available on module that have a network interface (such
as WLAN or Ethernet)

 Page: 29

28.05.2014

10.6 CAN / CAN ERRLOG / CAN?

CAN

Description Changes settings of the CAN (Controller Area Network) Interface. Settings are
stored in NVRAM and are effective after next reboot.

Parameters CAN has 5 required and one optional argument
 1. Baud Rate (decimal value)
 2. RX Message ID (hex value)
 3. RX ID is extended ID (binary 0 or 1)
 4. TX Message ID (hex value)
 5. TX ID is extended (binary 0 or 1)
 6. Optional: whether proprietary XON/XOFF flow control shall be used (see

Remarks section)

Return value ERR_OK (0) if command is accepted
ERR_ARGUMENT (4) if one or more arguments are wrong
ERR_PARAMCOUNT (3) if number of arguments is not 5

Example >

CAN 125000 1fe 0 2ff 1

Sets the CAN interface to 125,000 bits per second, the Message ID where the
module listens to the Standard Message ID 0x1fe and the Message ID that
the module uses for transmissions to the Extended Message ID 0x2ff

Remarks To enable flow control set the sixth argument to ON. In this mode, the Avisaro
Module sends CAN frames with a single data byte XOFF (19) if its input buffer is
nearly full. When input buffer space becomes sufficient again, the module sends
frames containing a single XON (17) data byte. This is similar to RS232 software
flow control. To switch off proprietary flow control, set the sixth argument to OFF
and reboot the module.

 Page : 30 28.05.2014

CAN?

Description With the CAN? command one can query the actual CAN settings including that
concerned to filtering, special modes and handling of external tarnsceiver chips. A
single line containing all information (9, 11 or 12 separated by spaces is submitted
to the active I/O interface.

Parameters There are two version
 ARP? Lists the ARP table
 ARP CLEAR Clears the table

Return value ARP?: The output is always ERR_OK (0).
ARP: ERR_OK(0) or ERR_ARGUMENT(4) if the argument is not CLEAR

Example >

<

CAN?

125000 49 STD 49 STD 3 6 OPEN OFF NORMAL OFF NORMAL

The meaning of all fields from left to right is:

1. The baud rate as decimal number.
2. Own RX ID. Message ID that must be used to address the Avisaro

Module. This is a hexadecimal number.
3. Type of own RX ID. This can be either STD or EXT.
4. Own TX ID. Message ID of outgoing messages from the Avisaro

Module. This is a hexadecimal number.
5. Type of own TX ID. This can be either STD or EXT.
6. Filter settings: Start ID of filter. This is a hexadecimal number.
7. Filter settings: End ID of filter. This is a hexadecimal number.
8. Filter settings: Filter mode. This can be one of OPEN, CLSD, EXT, STD,

BOTH. Please see the CANFLT page for details.
9. Flow control activity. This can be either ON or OFF
10. Operation mode: This can be LISTEN or NORMAL, where listen

means, that the module only listens on the bus but does not actively
drive it (does not send frames, ACKs and so on).

11. Can be one of: OFF, 11, 10, 01 or 00. If this is OFF, the module does
not drive the lines for special transceiver chips. Any other output
shows how the lines are driven. The fist bit is for STB/Mode0, the
second one is for EN/Mode1. For an explanation of those lines,
please see the TJA 1041 and similar user manuals.

12. Can be either NORMAL or ERRBITS. This info shows the state of the
error logging facility (see the remarks section above).

Remarks The 9th and 11th value are not available prior to firmware version 3.52
The 12th value only exists on version 4.39 and above

 Page: 31

28.05.2014

CAN ERRLOG

Description This command enables or disables logging of special event messages. If ERRLOG in
ON, events like bus errors, error warnings, overruns and so on are also stored
(beside regular frames) into the receive FIFO.
Requires Firmware Version 4.39 or higher.

Parameters <on/off>
 ON Enable logging of scecial events
 OFF Disable logging of special events

Remarks If error logging is enabled, e.g. with CAN ERRLOG ON, certain events from the
internal CAN controller circuit cause extra, synthetical frames, to bestored in the
receive FIFO. Those frames can be read like regular frames, but to distinguish
regular frames from extra frames, the CAN-ID must be checked. All extra frames
have an ID of 0xffffffff (or -1 in signed integer format), that is much bigger than
any valid regular ID. All extra frames also have an identifier that is the first byte of
the 8-bytes payload field. The other members of the payload field hold additional
information.

The following list shows all possible extra frame IDs, which can be found in the
first byte of the CAN payload field:

1. Error Warning frame
This frame is generated when a receive or transmit operation failed due
to some unsuccessful attempts to repeat the operation.

2. Overrun
This frame is generated when all internal RX buffers are full and a new
CAN frame appears on the bus that cannot be received.

3. Wakeup
This frame is generated while the CAN controller is sleeping and bus
activity is detected.

4. Error Passive frame
This frame is generated if the CAN controller switches from passive to
active mode or vice versa.

5. Arbitration lost
This frame is generated if the CAN controller loses bus arbitration while
attempting to transmit.

6. Bus Error frame
This happens when bus anomalies are detected.

The second byte of the CAN payload field contains the bit position where, in case
of a bus error, the error happens. Here's a list of values and their meanings. A bus
error occured ...

1. (not used)
2. .. between ID bits 21 and 28
3. .. at the start of the CAN frame
4. .. at the SRTR bit
5. .. at the IDE bit
6. .. between ID bits 18 and 20
7. .. ID bits 13 and 17

 Page : 32 28.05.2014

8. .. in the CRC sequence
9. .. at Reserved Bit 0
10. .. in the Data Field
11. .. at the Data Length Code
12. .. at the RTR bit
13. .. at Reserved Bit 1
14. .. between ID bits 0 and 4
15. .. between ID bits 5 and 12
16. (not used)
17. .. in the Active Error Flag
18. .. in the intermission bits
19. .. in the "tolerate dominant bits" section
20. (not used)
21. (not used)
22. .. at the Passive Error Flag
23. .. in the Error Delimiter
24. .. in the CRC delimiter
25. .. in the ACK Slot
26. .. at the End of Frame
27. .. in the ACK Delimiter
28. .. at the Overload Flag

The third byte of the CAN payload field contains the direction, that means, RX or
TX of the bus error. These two values are possible:
 0. Error during transmission
 1. Error while receiving

The fourth byte of the CAN payload field contains the type of bus error that
recently happened, This can be:
 0. Bit Error
 1. Form Error
 2. Stuff Error
 3. Other Error

The fifth byte of the CAN payload field contains the bit position from beginning of
the frame, when the CAN controller loses bus arbitration. Possible values are:
 0 ... 10 Arbitration lost in the standard identifier
 11 Arbitaration lost in the standard-RTR (or extended-SRR) bit
 12 Arbitration lost in IDE bit
 13 ... 30 Arbitration lost in the second part of ID (Extended frames only)
 31 Arbitration lost in RTR bit of extended frame.

The sixth byte contains the current RX error counter.

The seventh byte contains the current TX error counter.
Every extra frame also has valid timestamps, just like regular frames. All members
not mnetioned here are not used and filled with zeros.

 Page: 33

28.05.2014

10.7 CANEXT

CANEXT

Description This command can be used to change advanced settings of the CAN interface of
the Module. CANEXT requires one or three arguments. To take effect, the module
must be restarted.

Parameters CANEXT requires one or three arguments.
 1. Operating mode: one of the words LISTEN or NORMAL. In LISTEN mode, the

module passively listens on the bus, that is, it can only receive but never
sends and never causes any bus activity (including ACKs and error frames).

 2. Optional: 0 or 1.
Defines how control lines of a special CAN transceiver chip are driven. If this
is 0 and argument #3 is 0, both control lines are driven low. If this is 0 and
argument #3 is 1, pin 5 (on the Avisro Module) is driven low and pin 6 is
driven high. If this is 1 and argument #3 is 0, pin 5 is driven high and pin 6 is
driven low. If both are 1, both pins are driven high.

 r. Optional (but required if argument #2 is present): can be 0 or 1
If the last two arguments are omitted and after a restart, the control lines are
not driven furthermore.

Return value ERR_OK (0) if input contains no errors
ERR_ARGUMENT (4) If one or more arguments were rejected

Example >

>

CANEXT LISTEN

(Swiches the Module to listen mode)

CANEXT NORMAL 0 1

(Normal mode (transmit and receive). Pin 6 will be high and pin 5 will be low)

Remarks When using a standard CAN transceiver and for normal participation on the bus,
it is not necessary to use this command. To switch back to normal mode, simply
send CANEXT NORMAL and reboot the module.

 Page : 34 28.05.2014

10.8 CANFLT

CANFLT

Description This command exists to change properties of filtering of the CAN (Controller Area
Network) interface. CANFLT awaits three or four arguments. If a fourth argument
is given, and it is the keyword "NOW", settings are applied immediately but are
not stored. Otherwise, if there's no such fourth argument, the settings are stored
into internal Flash memory and effective after next reboot. In any case, the
meanings of the arguments are...

Parameters There are two version
 1. First Filter ID

This is the first message ID that passes the filter. This must be a hexadecimal
number. All messages below this ID are discarded.

 2. Last Filter ID
This is the last message ID that passes the filter. This must be a hexadecimal
number. All messages above this ID are discarded.

 3. Filter Mode
This must be one of the keywords OPEN, CLSD, EXT, STD, BOTH. See the
following list for filter modes.

 OPEN : The filter is completely open. All CAN messages are accepted
regardless of other filter settings. Use this configuration only in low
bandwidth environments. All messages are stored in the receive
FIFO of the module.

 CLSD : The filter is closed. No message IDs are accepted except the
one that addresses the module itself. See also the CAN command.

 EXT : The first and last filter IDs are valid for extended frames only,
that is, all standard messages are discarded (except the own ID) and
extended IDs are filtered using the given filter range.

 STD : The first and last filter IDs are valid for standard frames only.
All extended messages are discarded (except the own ID) and
standard IDs are filtered by the given filter range.

 BOTH : The first and last filter IDs are valid for both, standard and
extended frames. All messages in range pass the filter, regardless if
they are extended or standard frames.

Return value ERR_OK (0) if all arguments were accepted.
ERR_ARGUMENT (4) if any argument didn't match or the first filter ID was greater
than the last filter ID.

Example >

CANFLT 1f0 200 EXT NOW

(Sets the filter range to 0x1f0..0x200 for extended frame, thus, all 17

message ID will be passed by the filter: All standard frames are blocked and
the settings will be applied immediately without being stored into Flash
memory:)

Remarks The filters are embedded in hardware. Using filters that only let pass desired
CAN-frames reduces the interrupt load of the CPU.

 Page: 35

28.05.2014

10.9 CLOSE

CLOSE

Description This command closes files and network connections. For files that are open for
writing, CLOSE flushes all buffers to disk before it closes the them. TCP
connections are closed gracefully. UDP channels are inactivated.
CLOSE takes one argument that can be either a file/network handle or the
keyword ALL. In case of ALL, all open files are closed. Network handles are not
affected by ALL.

Parameters An open handle or ALL to close all files

Return value ERR_NOT_OPEN (28) if the specified handle is not an open file or network
connection.
ERR_ARGUMENT (4) if the argument was rejected.
File System errors (13...25) if the FS could not close the file.
ERR_UNSPEC (7) on internal errors (very unlikely).

Example >

>

>

CLOSE 101

Closes TCP connection with the handle number 101.

CLOSE 13

Closes an open file with the handle number 13

CLOSE ALL

Closes all open file but keeps network connections open

Remarks An application should read all receive buffers of a network connection until
they're empty, before a CLOSE command is performed. Otherwise, all buffered
data will be lost.

10.10 CMDS

CMDS

Description This commands prints out all available commands (including itself).

Parameters This command doesn't need any arguments.

Return value ERR_OK (0) (always)

Example >

CMDS?

Remarks CMDS? exists just for debugging purposes. It is not very useful in normal
situations.

 Page : 36 28.05.2014

10.11 CONNECT

CONNECT

Description This command initiates a TCP connection to a remote host. CONNECT needs at
least an IP address and a port number to establish a TCP connection. A third
argument (tx_delay in milliseconds) can be used for streaming mode to collect
data until tx_delay elapses. A fourth argument, which is the keyword WAIT,
causes the command machine to block until connection is established or timed
out.

Parameters CONNECT needs at least 3 and can have 1 or 2 additional arguments
 1. Handle number

This can be any number from 101 to 200. If CONNECT succeeds, that
number can be used in subsequent calls to other TCP-related commands.

 2. IP Address
The IP address of the remote machine.

 3. Port number
A port number where the remote service is listening.

 4. TX timeout (optional)
A tx_delay value (time in milliseconds) used for TCP streaming.

 5. Blocking / Non Blocking (optional)
The keyword WAIT

Return value ERR_ARGUMENT (4) if one of the arguments is invalid
ERR_OK (0) if the command is accepted
ERR_NOCONN (38) if a connection could not be established

Example >

>

>

CONNECT 101 192.168.0.233 80

Connects to host 192.168.0.233 on port 80.

CONNECT 101 192.168.0.233 80 1000

Connects to host 192.168.0.233 on port 80 and sets the time-out for
streaming mode to 1 second.

CONNECT 101 192.168.0.233 80 100 WAIT

Connects to host 192.168.0.233 on port 80, sets the time-out for streaming
mode to 100 ms and waits until connection established or timed out.
he filters are

Remarks CONNECT only works with modules that have a network interface.

 Page: 37

28.05.2014

10.12 CSTAT?

CSTAT?

Description This command prints out statistics counters of the CAN (Controller Area Network)
interface. The output consist of five decimal numbers separated by whitespace
(0x20) characters. From left to right:

1. RX_OK: Number of successfully received and buffered CAN frames.

2. RX_LOST: Is incremented when the input FIFO has not enough room to store a
received CAN Frame, so that frame must be thrown away.

3. TX_OK: Number of successfully transmitted CAN frames.

4. TX_FAILED: Is incremented when a frame could not be transmitted because the
CAN interface is temporarily busy.

5. BUS_ERRORS: Is incremented on bus errors. e.g. there's no other node that
acknowledge our retransmissions.

Parameters CSTAT? doesn't need any arguments

Return value ERR_OK (0) - Always

Example >

CSTAT?

outputs the following: 411 0 17 1 4

Remarks The CSTAT? command is only meaningful if the CAN interface is active. This
command only prints statistics counters for the primary CAN interface

 Page : 38 28.05.2014

10.13 DEL

DEL

Description With the DEL command, existing files can be removed. DEL requires a single
argument which must be the full path to the file. A path, in this terms, is a
composition of folder names and the file name separated by slashes. To delete a
file in the root directory, only the file name is required. The file must not be open
for DEL to succeed.

Parameters Path name and File name

Return value ERR_OK (0) if the file was deleted successfully.
ERR_FILE_OPEN (32) if an attempt was made to delete an open file.
ERR_FR_XX (13...25) file system error if something's gone wrong while trying to
delete the file.

Example >

>

DEL test.txt

Removes the file "test.txt" that is located in the root folder

DEL foo/bar/test2.txt

Removes the file "test2.txt" that resides in the folder "bar" which is a sub
folder of "foo"

Remarks DEL is only useful on modules with mass storage enabled (SD cards or USB sticks).
DEL only works on files that are currently not in use.

 Page: 39

28.05.2014

10.14 DIR

DIR

Description The DIR command can be used to show all files of a folder of the SD card. If no
argument is given, DIR prints the files of the root directory. If an argument is
attached, it must be the path of the folder which files should be displayed. Nested
folder names must be separated by slashes. If the argument is a single slash only,
the root directory is displayed as there were no argument.
For every entry in the specified directory the output format is:
1. 14 characters file or directory name in 8.3 FAT format. Long file names are not
supported. If a file name is shorter it is filled up with space characters (0x20).
2. In case of files, a decimal number that is the file size. In case of folders, the five
characters.
3. every entry is terminated by a CR/LF sequence (0x0d, 0x0a).

Parameters

Return value ERR_OK (0) if directory was read without error.
ER_FS_xx (13...25) file system error if anything's gone wrong while accessing the
disk.

Example

DIR
Shows the content of the root directory
DIR dir1/dir2
Shows the content of dir2 which is a sub directory of dir1 which resides in
the root directory

Remarks DIR only makes sense on modules that have some kind of mass storage like SD-
Cards or USB-sticks. The output of DIR is somewhat different from the DOS-
equivalent.

10.15 DNS

DNS

Description This command issues a name server query. It needs a single argument which is
the domain name. For this to work, the Avisrao module must be connected to the
internet and the name server must be configured as well.

Parameters

Return value ERR_OK (0) if the DNS query succeded. Also the IP address of the given domain
name will be printed to the command line.
ERR_NO_DATA (8) if no answer arrived.

Example

DNS www.yahoo.com

Remarks IP address output, if successful, is of the well-known dotted

format.

 Page : 40 28.05.2014

10.16 ECHO

ECHO

Description The ECHO command simply sends back its argument. This command might by
useful to test the I/O interface connection.

Parameters

Return value ERR_OK (0) Always.

Example

 ECHO Hello
The module sends "hello" back to the user

Remarks Output is always sent to the active I/O interface, also if invoked from the CMD
page of the web interface.

10.17 ERR?

ERR?

Description With the ERR? command, one can query the global error state, that is, a variable
that changes whenever a command is executed. If a command fails, the module
sends a message "ERR x" to the I/O interface, where x is the actual error code,
indicating that something went wrong.ERR? without an argument shows the
textual representation of this error code. When an argument is given, ERR?
interprets that argument as error code and shows its textual representation. After
ERR? was called, the clobal error state is set to ERR_OK.

Arguments None or an error number which should be displayed as text.

Return value ERR_OK(0) Always. ERR? resets the global error variable.

Example

 ERR?
yields to (usually): I AM OK
ERR? 4
yields to: WRONG ARGUMENT

Remarks None, because this command is much too simple.Wink

 Page: 41

28.05.2014

10.18 ERRORS?

ERRORS?

Description This command prints out all system-known error numbers and their textual
representations.

Parameters None.

Return value ERR_OK (0) Always.

Example

 ERRORS?
Outputs the following:

(0) I AM OK
(1) COMMAND DOES NOT EXIST
(2) UNKNOWN FRAME TYPE
(3) ARGUMENT COUNT MISMATCH,
(4) WRONG ARGUMENT
(5) WRONG SIZE
(6) CRC CHECK FAILED
(7) UNSPECIFIED ERROR,
(8) NO DATA
(9) NO DISK
(10) INVALID HANDLE
(11) TRUNCATED
(12) REJECTED
(13) FS NOT READY
(14) FS NO FILE
(15) FS NO PATH
(16) FS INVALID NAME
(17) FS INVALID DRIVE
(18) FS ACCESS DENIED
(19) FS FILE EXISTS
(20) FS R/W ERROR
(21) FS WRITE PROTECTED
(22) FS NOT ENABLED
(23) FS NO FILE SYSTEM
(24) FS INVALID OBJECT
(25) GENERAL FS ERROR
(26) OUT OF RESSOURCES
(27) ID IN USE
(28) NOT OPEN
(29) NO READ ACCESS
(30) NO WRITE ACCESS
(31) TOO MUCH BYTES
(32) ALREADY OPEN
(33) END OF FILE
(34) DISK FULL
(35) NO FW IMAGE
(36) TASK ALREADY ALIVE
(37) TASK NOT RUNNING

 Page : 42 28.05.2014

(38) NET CONNECTION FAILED
(39) NET DOWN

Remarks This command is for informational purpose. The error list might grow in future
releases.

10.19 ETH
ETH

Description This command sets the Ethernet address of the ENC28J60 chip.
ETH requires a single argument which is the new Ethernet
address of the ENC28J60. The argument must a 12-digits

hexadecimal number. The new address will be effective after next
reboot.

Parameters

Return value ERR_OK (0) if the argument was accepted.
ERR_ARGUMENT (4) if the argument was not a valid 12-digits hex number.
ERR_REJECTED (12) if the argument has bit 0 set. Bit 0 is reserved for multicast
addressing.

Example

ETH 0c37e3771d66
Sets the local ethernet of the ENC28J60 to 0c37e3771d66

Remarks This command only makes sense on modules that are equipped with an Ethernet
interface. WLAN interfaces have their own factory-assigned addresses which
cannot be changed.

 Page: 43

28.05.2014

10.20 ETH?
ETH?

Description With ETH? one can query the current Ethernet address of the ENC28J60 chip and
also some statistical values. The output consists of seven values separated by
CR/LF (0x0d, 0x0a):
1. The ethernet address of the interface (assigned by the ETH command)
2. Number of received packets
3. Number of unsuccessful RX attempts (dropped packets)
4. Number of transmitted packets
5. Number of TX failures
6. Number of internal resets (rarely needed to keep the net alive)
7. The connection status, can be either NC (not connected) or CONN (connected)

Parameters

Return value ERR_OK (0) always.

Example

ETH?
Example output can be:
0c37e3771d66 1255 1 6340 0 0 CONN

Remarks This command is only available if the module has an Ethernet interface.

10.21 FSTAT

FSTAT

Description The FSTAT? command can be used to query file- and disk related information.
FSTAT? can be called with zero or one argument. If no argument is given, FSTAT?
shows the disk parameters, that is, file system, media size and number of free
Kbytes.

Parameters No Argument: FSTAT? shows general disk information
File or directory name : FSTAT? shows information related to the given object

Return value When mass storage device is not available or damaged:
NO DISK
When called without argument and disk is present:
xxx SIZE:yyy FREE:zzz, where xxx is the file system type (FAT12, FAT16, FAT23,
RAW), yyy is the total size and zzz is the size of free bytes.
When called with a file name:
filename size date time, attributes (separated by spaces). The attributes field can
contain the characters R(read only), H(hidden), S(system), A(archive bit set)
When called with a directory name:
dirname, 0, date, time, D in contrast to the file output, the first value is always 0
and the last is always D(directory).

Example FSTAT?

 Page : 44 28.05.2014

Example output might be: FAT16 SIZE: 1981024 FREE:1955232
FSTAT? autorun.txt
When autorun.txt is a file, example output is: autorun.txt 17 2010/10/04
18:03:16 A
FSTAT? mydir
When mydir is a directory, example output is: mydir 0 2010/04/17 13:21:18
D

Remarks Only modules with some kind of mass storage (SD-Card, USB-Stick) support this
command.

10.22 FSYNC
FSYNC

Description The FSYNC command can be used to specify a time-out condition in order to flush
file caches and update the FAT structure. if FSYNC is used, and a file is open for
writing, all cached data will be written to disk, and corresponding FAT entries are
written periodically. This feature helps to minimize data loss under rough
conditions, where power failures can occur.

FSYNC requires one argument that is the "flush time" in milliseconds. If 0 is given,
the flush feature is switched off. The argument of FSYNC is stored in internal
NVRAM and is effective after next reboot.

FSYNC globally applies to all files that are open for writing. There's no per-file
FSYNC feature.

To retrieve the stored FSYNC argument, simply invoke FSYNC?

Parameters

Return value ERR_OK (0) Always. Invalid inputs (such as letters) are interpreted as zero.

Example

FSYNC 1000
All files are flushed within a period of one second
FSYNC?
Shows current FSYNC value: 1000

Remarks Only devices with mass storage such as SD-Cards or USB sticks support this
command.

 Page: 45

28.05.2014

10.23 FTP
FTP

Description Description
This command exists to configure the internal FTP server. FTP requires six
arguments in the following order:
1. Protocol Port
This is the port number that an FTP client must use to connect to this server.
Usually port 21.
2. Data Port
This is the port number used for data transfers of this FTP server.
3. User Name
Login name to use this FTP service.
4. Password
Password needed to use this FTP service.
5. Enabled
Use one of the words ON or OFF. ON enables the server, OFF disables it.
6. Timeout
A value in seconds while the server keeps the connection open event if it is
inactive.

Parameters

Return value ERR_LENGTH (5) if username or password is too long.
ERR_ARGUMENT (4) if other arguments do not match.
ERR_OK (0) if command was accepted.

Example

FTP 21 12345 mama roach ON 120
This enables the FTP server on port 21, using 12345 as data port. Users must
logon using mama/roach and the server automatically cancels connections
after 2 minutes of inactivity

Remarks FTP is only possible on devices that have some kind of network interface
(Ethernet or WLAN). Per default (factory settings), the FTP server is disabled.

10.24 GSM
GSM

Description This command can be used to change settings that are relevant for GSM
functionality. The local GSM client can also be startet and stopped by this
command and AT and USSD queries can be executed. The command requires
always two arguments. The following options are possible:

GSM CMD <...>
This executes either an USSD query or an AT command. If the first character in
the third argument is an asterisk (*), the third argument is interpreted as USSD

 Page : 46 28.05.2014

query. Otherwise, if it begins with 'a' ore 'A' followed by 't' or 'T', it is interpreted
as AT-command. Any argument that doesn't fit these requirements is rejected.

GSM NET <START|STOP>
This forces a startup or shutdown of the local GSM client regardless of dial-in
policy. However, if dial-in policy is set to PERMANENT, the network will
automatically reconnect after a GSM NET STOP. GSM NET START will fail if the
module is not configured to use GSM as networking interface. Please see the NET
command.

GSM APN <...>
This sets the APN (Access Point Name) required by GSM/GPRS networks. Contact
your GSM provider for your APN or seek for it here.

GSM PIN <...>
This sets the PIN, usually a 4-digit number, to unlock your SIM card used by the
GSM modem. You should get this number from your GSM provider. Often it can
be found on the package that contains the SIM card.

GSM DIAL <...>
This sets "Dial String", that is something like a telephone number to attach to the
GSM/GPRS network. Often this string is "*99#" (without the quotes).

GSM PASS <...>
This sets PPP (Pomt-to-Point Protocol) password used for access to the
GSM/GPRS network. Contact your GSM provider for the password or seek for it
here.

GSM USER <...>
This sets PPP (Pomt-to-Point Protocol) user name used for access to the
GSM/GPRS network. Contact your GSM provider for the user name or seek for it
here.

GSM POLICY <AUTO|PERM>
This sets the dial-in policy. There are currently two exclusive options defined:
PERM and AUTO. If GSM POLICY PERM is given, the module aggressively tries to
reconnect whenever the conenction is lost. On GSM POLICY AUTO, the module
connects 'on demand', that is, it connects to the GSM network when any local
socket is open and disconnects when the last socket is closed.

Parameters

Return value ERR_NET_DOWN (39) if GSM NET START failded.
ERR_ARGUMENT (4) if one or more arguments do not match.
ERR_REJECTED (12) if GSM CMD <...> was called with invalid input.
ERR_OK (0) if command was accepted.

Example

GSM CMD AT+CPIN?
This shows the status of the modem regarding to a SIM card.

Remarks This command is available on firmware version 6.05 and above. There must be a
GSM modem attached to the module.

 Page: 47

28.05.2014

10.25 GSM?

GSM?

Description This command simpy shows the settings of the local GSM client separated by
CR/LFs.

Parameters

Return value

Example

pinternet.interkom.de
9778
*99#
PPPUSER
PPPASS
PERM
This means, from top to bottom: APN, PIN, Dial-String, PPP Username, PPP
Password, Dial-In Policy

Remarks

10.26 HTTP
HTTP

Description This command can be used to set up the internal web server which can be used to
communicate with the module and configure the module over any web browser.
HTTP requires one or two arguments which are listed below:
1. A single argument, either ON or OFF
This enables(ON) or disables(OFF) the HTTP server.
2. Two arguments, USER xxxx
This sets the user name for HTTP authentication. You must enter this name in the
login box of the browser when connecting to the module.
3. Two arguments, PASS xxxx
This sets the password for HTTP authentication. You must enter this name in the
login box of the browser when connecting to the module.
4. Two arguments, PORT xxxx
This is the port number where the server listens for connections. Usually use
PORT 80 for standard HTTP, but you can use any other port as well.

Parameters

Return value ERR_LENGTH (5) if username or password is too long.

  ERR_ARGUMENT (4) if other arguments do not match.
  ERR_OK (0) if command was accepted.

Example HTTP USER paparoach

 Page : 48 28.05.2014

This configures the user name to be
"paparoach".

Remarks The internal HTTP server supplies the web interface for a

module's configuration. It is not intended to run user-specific
web pages. Per default (factory settings) the server is enabled
on port 80, user is admin and password 1234.

10.27 HTTP?
HTTP?

Description This command simpy show the settings of the web server as a single line. For
example:
admin 1234 80 ON
This means: the server is enabled on port 80, user is admin and password 1234.

Parameters

Return value

Example

Remarks

10.28 ICC
I2C

Description Changes the I2C slave address of the I2C I/O interface.

Parameters Just a single decimal value between 1 and 127 (both numbers inclusively).

Return value ERR_OK (0) if input was valid.
ERR_ARGUMENT (4) if input was not in range

Example

I2C 119
This sets the module's I2C slave address to 119

Remarks The default address (factory settings) of any new module is 73. This command has
no meaning if the I2C I/O interface is not in use. This command does not affect
the secondary I2C interface. The new address is active after next reboot.

 Page: 49

28.05.2014

10.29 I2C?

I2C

Description Simply prints out the I2C settings. This is currently a single number (only the slave
address).

Parameters

Return value

Example

Remarks

10.30 IP

IP

Description The IP command exists to change settings of the integrated IP protocol stack. IP
requires two or three arguments. The first argument is a refinement, that is,
"what" should be done and the second argument is the actual value.The following
list shows the capabilities of the IP command:
IP LOCAL xxx.xxx.xxx.xxx
This sets the local IP address (the address of the module itself). The second
argument must be a valid IP address in standard dotted-decimal notation.
IP GW xxx.xxx.xxx.xxx
This tells the module where the IP gateway can be reached. All IP packets that
doesn't match the subnet mask are send to the gateway which (hopefully) routes
them into another net. The second argument must be a valid IP address in
standard dotted-decimal notation.
IP MASK xxx.xxx.xxx.xxx
This sets the subnet mask that the module uses to decide if packets must be sent
to the gateway machine. The second argument must be a valid IP address in
standard dotted-decimal notation.
IP DNS xxx.xxx.xxx.xxx
To map domain names to IP addresses, the module needs the address of a
machine that is able to respond to DNS queries. The second argument must be a
valid IP address in standard dotted-decimal notation.
IP DHCP OFF | AUTO | AUTOCL | CLIENT | SERVER
Use IP DHCP CLIENT to enable automatic IP address assignment of the Avisaro
module by a DHCP server.

 Page : 50 28.05.2014

If you want the Avisaro Module to be itself a DHCP server, invoke IP DHCP
SERVER. DHCP server functionality of Avisaro Modules is limited to some extend,
because it only offers addresses in the 192.168.0.x range without keeping any
track of the clients.

The IP DHCP AUTO function can be used for easy auto-configuration of
unconfigured modules. In this mode the module enables its very simple DHCP
server, when it is in default mode. Default mode means that the SSID must be
"avisaro" and the WLAN must be in ad-hoc mode. Any other mode disables the
DHCP server automatically until the module is brought back into default mode.

IP DHCP AUTOCL is a mix mode of AUTO and CLIENT, because the module
behaves like IP DHCP AUTO is active in default mode, but enables its DHCP client
in configured mode. To disable anly DHCP functionallity use IP DHCP OFF.
IP ALIVE xxx
This sets or resets the global keep-alive timeout value which counts seconds. If
the second argument is a decimal value greater than zero, all connected TCP
sockets on all network interfaces will send keep-alive packets if they are inactive
for the given time. If the second argument is zero, keep-alives are globally
switched off.

Parameters

Return value ERR_OK (0) if the command was accepted.
ERR_ARGUMENT (4) if one or more arguments didn't match.
ERR_REJECTED (12) if both network interfaces are enabled but the third argument
was missing.

See (Mehr here) for complete list of error codes.

Example

IP LOCAL 192.168.0.233
IP GW 192.168.0.1
IP MASK 255.255.255.0
IP DNS 192.168.0.1
IP DHCP OFF
IP ALIVE 10
This is a complete configuration sequence for interface 0 (WLAN), if
Ethernet is also enabled. In addition, the global keep-alive timeout is set to
10 seconds

Remarks If only one network interface is active, either WLAN or ethernet, the above
commands change settings for only that interface. If both interfaces, WLAN and
Ethernet, are in use simultaneously a third argument is needed which must be 0
(for WLAN) and 1 (for Ethernet). The only exception is the IP ALIVE command
which never needs a third argument because IP ALIVE affects all network
interfaces.

 Page: 51

28.05.2014

10.31 IP?

IP?

Description With the IP? command, all IP-related settings and values can be requested. IP?
requires either zero or one argument which must be either 0 or 1. There are two
sets of configuration entries, one for WLAN and one for Ethernet that can be
queried. If 0 is given as argument, IP? shows all WLAN related settings. If 1 is
given, then the Ethernet-related IP settings will be shown. Without an argument,
IP? prints the settings of the currently active network interface. An argument is
mandatory if both network interfaces are used simultaneously. Each output
shows two blocks of IP addresses. The first block contains values stored in Flash
memory while the second one shows the actually used values. These can differ
from the stored settings if dynamic configuration over DHCP is enabled. IP? prints
out IP settings line by line in the following order.
1. NVRAM-stored: Local IP address.
2. NVRAM-stored: Subnet mask.
3. NVRAM-stored: Gateway address.
4. NVRAM-stored: Nameserver address.
5. DHCP flag. This can be of of OFF, AUTO, AUTOCL, CLIENT, SERVER, indicating if
dynamic configuration with DHCP is enabled or not.
6. Currently active: Local IP address.
7. Currently active: Subnet mask.
8. Currently active: Gateway address.
9. Currently active: Nameserver address.
10. Keep-alive timeout. This is the global TCP keep-alive timeout value.

Parameters

Return value

Example

IP? 0
Prints out something like that
192.168.0.133
255.255.255.0
192.168.0.1
192.168.0.1
OFF
192.168.0.133
255.255.255.0
192.168.0.1
192.168.0.1
10

Remarks

 Page : 52 28.05.2014

10.32 LIST
LIST

Description The LIST command can be used to print out a stored BASIC script. Simply type LIST
at the command line (without any arguments) and the BASIC script is sent to the
currently selected I/O interface.

Parameters

Return value ERR_OK (0) If the script source code is visible.
ERR_REJECTED (12) If the module contains a pre-compiled code.

Example

LIST
Shows what is stored as BASIC script

Remarks There's no way to make pre-compiled code visible. This behaviour is by design.

10.33 LISTEN

LISTEN

Description The LISTEN command is used to open a TCP port for incoming connections. This
allows remote clients to contact am Avisaro Module over TCP/IP. Listen requires
two, three or four arguments.

Parameters The arguments are in the following order:
1. Handle number
This can be any number from 101 to 200. If LISTEN succeeds, that number can be
used in subsequent calls to other TCP-related commands.
2. Listen Port
A port number that is armed to satisfy connection requests. Can be any number
in the range from 0 to 65535.
3. TX Delay (Optional)
A value in milliseconds that specifies the delay for outgoing packets. This
argument is only valid in streaming mode. Packets are kept as long as they're too
small or tx delay expires.
4. Wait until connection established (Optional)
If this argument is given, and it is exactly the word "WAIT", the command
interface will block until a client has successfully established a connection.

Return value ERR_OK (0) if everything works as expected. The socket is then in listen state.
ERR_ARGUMENT (4) if one ore more arguments failed validation.
ERR_NOCONN (38) if, for any reason, the socket could not enter listen state.

Example

LISTEN 101 12345
Puts socket #101 into listen mode on TCP port 12345. Arguments 3 and 4
are omitted.

 Page: 53

28.05.2014

Remarks If the 4.th argument (WAIT) is used and no client connects to the module, the
command interface remains frozen until the module restarts or the socket is
closed by other means (e.g. over the web interface).

10.34 LOAD

LOAD

Description LOAD loads a new BASIC skript into Flash memory of the module. LOAD can be
called with zero or one argument. If no argument is given, LOAD reads characters
from the currently selected I/O interface and stores them into BASIC's Flash
memory area. In this case, if LOAD founds a Stop Sequence (usually three
successive pluses), transfer is complete. If an argument is given, it must be the
name of an existing file on SD card which contains the source code of a BASIC
script.

Parameters None or an existing file on disk (SD-Card or USB stick)

Return value ERR_OK (0) on success.
ERR_FR_xx (13...25) if something's gone wrong while accessing the media.
ERR_TOO_MUCH (31) if the the source code is too big.

Example

LOAD hello.bas
Loads the file "hello.bas" into flash memory for execution by the scripting
subsystem

Remarks Any type of file can loaded by LOAD, LOAD does no validation except for the file
size. Actually supported files are BASIC skripts as ASCII text and pre-compiled
BASIC programs.

 Page : 54 28.05.2014

10.35 LOADFW

LOADFW

Description This command can be used to tranfer a new firmware image from mass storage
card into Flash memory which can then be used to re-program the MCU. The
command needs one or two arguments. The first argument is the file name
(complete path) of a firmware image that resides on the media. The second
argument is an optional argument for internal use only. It can be MV1 or MV2. If
the second argument is given, certain parts of the firmware can be changed
without affecting the main code.

Parameters 1. File name of the new firmware
2. (Optional) MV1 or MV2, not intended for customer use. Please do not use!

Return value ERR_OK (0) if image is transferred successfully into Flash memory.
ERR_TOO_MUCH (31) if image file is too big.
ERR_FR_NOT_READY(13) ERR_FS_UNKNOWN(25) file system error if
something's gone wrong during access of the file

Example

LOADFW v3_32.bin
Loads the file v3_32.bin into Flash memory for later re-programming of the
MCU

Remarks Never invoke PROGFW if LOADFW fails. Otherwise the module might be seriously
damaged!

10.36 MKDIR

MKDIR

Description The MKDIR command's purpose is to create new folders on the SD card. MKDIR
requires one argument that is the full path to the new folder. Nested folder
names must be separated by slashes. A folder in the root directory does not need
any slashes

Parameters Name and path of new folder that should be created.

Return value ERR_OK (0) if a new folder was created successfully.
ERR_FR_XX (13...25) file system error if anything's gone wrong while trying to
create the folder.

Example

MKDIR foo
Creates a new folder named "foo" in the root directory
MKDIR foo/bar

 Page: 55

28.05.2014

 Creates a new folder named "bar" that resides in folder "foo"

Remarks This command only exists on devices that have some kind of mass storage (such
as SD-Card or USB stick).

10.37 MOVE

MOVE

Description The MOVE command can be used to move files between directories and also to
rename files.

Parameters MOVE requires two arguments, the first one is the current path and name of the
file and the second one is the new path/name. MOVE is also able to move or
rename directories.

Return value ERR_OK (0) f the file or directory was moved or renamed successfully.
ERR_FR_XX (13...25) File system error if anything's gone wrong while trying to
move or rename a file or directory.
ERR_FILE_OPEN (32) If an attempt was made to move or rename a file that is
open for reading or writing.

Example

MOVE subdir/test.txt hello.txt
Moves the file "test.txt" from the directory "subdir" to the root directory
and renames it to "hello.txt"
MOVE before after
Renames a file or directory in the root directory from "before" to "after"

Remarks New since version 4.57!
Files that are currently open cannot be moved. Do not move or rename
directories which contain files that are open for reading or writing.

 Page : 56 28.05.2014

10.38 NAME

NAME

Description Sets a new module name. By default the name is "Avisaro 2.0". Changing this
name might be useful in some situations e.g. identifying different modules easily
by looking at their web pages.

Parameters A single word that is the new module name.

Return value ERR_OK (0) if the new name was accepted.
ERR_LENGTH (5) if name was too long.

Example

NAME Andromeda
Assigns the new name "Andromeda"

Remarks The name is stored into NVRAM and changed immediately. No reboot is
necessary.

10.39 NET

NET

Description This command can be used to set the global network configuration, that is, if one
or two network interfaces will be used and how they work together.

Parameters NET requires one or two arguments. The first one is the network selector and the
second, optional one, enables or disables network bridging mode.
The first argument must be one of the following:
GSM
Since firmware version 6.05. Only GSM is enabled. This requires a GSM modem
attached to the AVISARO module.
WLAN
Only WLAN is enabled. This is an absolute setting that does not probe for other
network components.
ETH
Only Ethernet is enabled. Same as WLAN but requires an ENC28J60-chip.
NONE
All network interfaces are disabled. Networking is not possible even if a network
interface exists.
AUTO
The module first probes if a WLAN interface exists. If that succeeds, WLAN will be
usedas network interface. If no WLAN interface is found, the module then checks
for the presence of Ethernet interface.
BOTH
Both, WLAN an Ethernet are used simultaneously. This is mandatory for bridging
mode.
The second argument can be:

 Page: 57

28.05.2014

BRIDGE
Bridging mode is enabled. In bridging mode, Ethernet packets are transparently
routed over WLAN and vice versa. Also the first argument of NET must be BOTH
for this to work.
NOBR
Bridging mode is disabled.
Like the most configuration commands, NET settings are effective after next
reboot.

Return value ERR_OK (0) if command was accepted
ERR_ARGUMENT (4) if one or more arguments don't match

Example

NET WLAN NOBR
Uses WLAN-only mode and switches previous enabled bridging off

Remarks This command has no effect, if the module has neither a WLAN nor an Ethernet
interface.

10.40 NET?

NET?

Description With NET? the current network configuration can be queried and printed to the
I/O interface. The output consists of two or three words that reflect the network
configuration status. The first word is always the setting that has been made by
using the NET command. The second word is the actual network configuration.
For example: If NET was invoked with AUTO and the firmware found a WLAN
module, then NET? will give AUTO WLAN. If the network was configured to use
bridging mode (that is: NET BOTH BRIDGE), NET? will give BOTH BOTH BRIDGE, if
both network devices are functional so that bridging can take place. Here are
some example outputs:
AUTO WLAN
When AUTO was selected and WLAN is found
BOTH WLAN
When BOTH was selected but only WLAN is found. Potentially enabled bridging is
OFF in this case, because bridging requires both interfaces but only one is active.
BOTH BOTH
When BOTH was selected without bridging and both network interfaces was
found.
WLAN NONE
When WLAN was selected but can't be activated.
BOTH BOTH BRIDGE
When BOTH was selected with bridging and both interfaces are active so that
bridging can be performed.
Some more combinations are possible, such as NONE NONE etc.

Parameters

 Page : 58 28.05.2014

Return value

Example

Remarks

10.41 NEW

NEW

Description This command creates a new file on disk and opens it for writing. If another file
with the same name (or path) aready exists, the command is rejected by the
module.

Parameters NEW requires two arguments. The first one is a handle number in the range from
0 to 100 which must be used in subsequent operations on that file, if NEW
succeeds. The second and last argument is the name (or full path) of the new file.

Return value ERR_OK (0) if a new file was created and openend for writing.
ERR_ID_USED (27) if the supplied handle number is already in use.
ERR_FILE_OPEN (32) if a file with the same name is already open.
ERR_FIL_EXHAUSTED (26) if the file system has not enough memory to allocate
file management information.
ERR_FR_... (13...25) file system errors if something's going wrong while creating
or accessing the file.

Example

NEW 1 hello.txt
Creates a new file named "hello.txt" in the root directory and opens it as
handle #1

Remarks This command only exists on modules with some kind of mass storage (SD-Card
or USB stick).

10.42 OPEN

OPEN

Description This command can be used to open an existing file for reading.

Parameters The command needs two arguments. First a handle number in the range from 0
to 100 and next the name (or full path) of a file. If open succeeds, the given
handle number must be used in subsequent calls to other operations on that file.

 Page: 59

28.05.2014

Return value ERR_OK (0) if the file was opened successfully.
ERR_ID_USED (27) if the handle is already in use (e.g. by another file).
ERR_FILE_OPEN (32) if the file is aready in use (opened for reading or writing)
ERR_FIL_EXHAUSTED (26) if the system couldn't allocate a file descriptor for that
file.
ERR_FR_... (13...25) file system errors if the file system encountered an error.

Example

OPEN 1 hello.txt
The file hello.txt is opened for reading as handle #1OPEN 1

hello.txt
The file hello.txt is opened for reading as handle #1

Remarks Before an existing file can be read ist must be opened using OPEN. When done,
use the CLOSE command to close the file and free the file handle.

10.43 OPEN?
OPEN?

Description OPEN? can be used to print all file handles that are currently open. A file is in
open state, when its handle is in use (activated by OPEN, NEW oer APPD). OPEN?
does not require any arguments. The output is a list of all open files separated by
comma.

Parameters

Return value

Example

OPEN?
If e.g handles 1,4 and 5 are open, OPEN? prints: 1,4,5

Remarks

10.44 PING

PING

Description This command sends ICMP echo request messages to a remote host. It works
similar to the "ping" utility on modern operation systems.

Parameters PING needs a single argument that is the IP address of the remote host in
standard dotted-decimal format.

Return value ERR_ARGUMENT (4) if the IP address is not valid.
ERR_OK (0) If remote host answered the request.

 Page : 60 28.05.2014

ERR_NET_DOWN (39) if echo requests could not be sent.
ERR_NO_DATA (8) if remote host didn't answer.

Example

PING 192.168.0.1
Hello 192.168.0.1, are you there? Prints: OK if 192.168.0.1 answers or ERR8
if 192.168.0.1 cannot be reached.

Remarks PING does not understand host or domain names. You could call DNS before if
the hostname is known.

10.45 PORT

PORT

Description The PORT command can be used to use a subset of the Module's pins as GPIOs or
as analog or digital signal lines. PORT commands overwrite previous
configurations. For example: If you're using the RS232 interface, a PORT 9 GET
command immediately disables the TXD line.

Parameters The general syntax of the PORT command is:
PORT n cmd arg1 arg2

Where n is the pin number and cmd is the subcommand. The additonal
arguments arg1 and arg2 are optional and currently only used for square wave
generation (PWM).
The following subcommands are available:
PWM
Generates square waves. arg1 and arg2 are used to set pulse/pause lengths. The
first one (arg1) determines the pause length in units of 0.5 µs and the latter one
(arg2) is the pulse length, also in 0.5 µs units. Pin 5, 6, 7, 9, 10 and 11 can be used
as PWM outputs simultaneously. Since all outputs share a common timer, the
frequency of each signal must be equal to the the others. To follow this rule,
simply make sure that the sum of arg1 and arg2 is the same for all outputs.
SET
Drives pin HIGH if it is an output pin
CLR
Drives pin LOW if it is an output pin
GET
Reads digital value (0 or 1) from that pin
ANA
Reads analog value (0...1023) from that pin

Return value ERR_OK (0) if the action was performed without error.
ERR_ARGUMENT (4) if input was rejected.

Example

PORT 2 SET
Makes one LED on the trailer board glow

 Page: 61

28.05.2014

 PORT 7 PWM 1000 1000
Generates symmetric square waves with a period of 1ms

Remarks This command exists since version 3.48. The Avisaro module pin numbering
scheme can be found here: click. The following list shows all possible pin
functions:
Pin1
Can't be used (VBAT)
Pin2
Can be used as GPIO. Pin2 is connected to one LED on the trailer board.
Pin3
Can be used as GPIO. Pin3 is connected to the other LED on the trailer board.
Pin4
Can be used as GPIO. Pin 4 is connected to the key on the trailer board.
Pin5
Can be used as GPIO and PWM output. Pin 5 is connected to DCD on the
RS232/RS485 socket.
Pin6
Can be used as GPIO and PWM output. Pin 6 is connected to DSR on the
RS232/RS485 socket.
Pin7
Can be used as GPIO and PWM output. Pin7 is connected to DTR on the
RS232/RS485 socket.
Pin8
Can be used as GPIO and analog input. Pin 8 is connected to RING on the
RS232/RS485 socket.
Pin9
Can be used as GPIO, analog input and PWM output. Pin 9 is connected to TXD on
the RS232/RS485 socket.
Pin10
Can be used as GPIO and PWM output. Pin 10 is connected to RXD on the
RS232/RS485 socket.
Pin11
Can be used as GPIO and PWM output. Pin 11 is connected to CTS on the
RS232/RS485 socket.
Pin12
Can be used as GPIO. Pin 11 is connected to RTS on the RS232/RS485 socket.
Pin13
Can't be used. (GND)
Pin14
Can't be used (RESET)
Pin15
Can be used as input or open-drain output. Pin15 is also used as SCL of the IIC
interface.
Pin16
Can be used as input or open-drain output. Pin 16 is also used as SDA of the IIC
interface.
Pin17
Can't be used. (Internal SPI)
Pin18
Can't be used. (Internal SPI)

 Page : 62 28.05.2014

Pin19
Can't be used. (Internal SPI)
Pin20
Can't be used. (Internal SPI)
Pin21
Can't be used. (Internal SPI)
Pin22
Can't be used. (Internal SPI)
Pin23
Can't be used. (Internal SPI)
Pin24
Can't be used. (VCC)

10.46 POS

POS

Description The POS command can be used to move the file pointer of an open file. It can also
be used to extend the file size through cluster pre-allocation.

Parameters POS needs two arguments. The first one is a file handle that must previously be
opened by any means such as the OPEN, NEW or APPD commands. The second
argument is the new zero-based absolute position of the file pointer.

Return value ERR_OK (0) if the file pointer is moved successfully.
ERR_NOT_OPEN (32) if the given handle doesn't represent an open file.
ERR_FR_XX (13...25) file system error if the file pointer could not be moved for
any reason.

Example

POS 1 200
Moves the file pointer of a file that is open as handle #1 to position 200
(zero-based)

Remarks If the file is open for reading or writing, the next read or write access will continue
from the new position. If a file is open for writing and the file pointer is moved
beyond the file size, that file is enlarged to the new file pointer position. In this
case, content between the old and the new position is unpredictable.

 Page: 63

28.05.2014

10.47 PROGFW

PROGFW

Description This command re-programs the MCU with a firmware image that is already stored
in Flash memory. While programming a bunch of dots is printed to the current I/O
interface.

Parameters If the single argument "RUN" is given, the module restarts after programming
completes. Without RUN, the module must be restarted manually.

Return value There's no return value because the old firmware is overwritten.

Example

PROGFW RUN
Re-programs the MCU and reboot

Remarks Never invoke PROGFW if you are not sure that a valid firmware image is loaded.
See LOADFW also.

10.48 PROMPT

PROMPT

Description When entering a command, the interface answers with a prompt. The command
"prompt" allows to change this "Prompt". A Prompt is a sequence of characters
that the module sends to the currently selected I/O interface when input of new
commands is possiple. The default Prompt is the sequence {0x0d, 0x0a, 0x3e},
which is a carriage-return, line-feed and a > character.

Parameters Just a string used as new prompt. The maximum length of a Prompt is 15. Longer
inputs are truncated.
To enter a special character, use the "\xxx" format - with xxx being the decimal
value for the character. Example: \ 010 \ 13 for a carriage return (omitt the
spaces) and a line feed

Return value ERR_OK (0) Always.

Example

PROMPT \ 010 \ 013hello
Sets the Prompt to "hello" and outputs a carriage return/line feed before.

Remarks The new prompt is active after next reboot.

 Page : 64 28.05.2014

10.49 PROT

PROT

Description Sets the active I/O interface. PROT must be called with one or two arguments.
The second argument is optional. Please see below.

Parameters RS232 (RS232 Interface)
I2C (I2C bus - Avisaro is slave device)
SPI (SPI bus - Avisaro is slave device)
CAN (CAN bus)
SOCK (TCP/IP socket - Avisaro is listening)
NONE (I/O is disabled)
FILE (Output is written to file 'outfile.log' " (MehrDetails)
2) Second argument (Optional)
NOW
Optional argument to make changes immediately, but not permanently. With
"NOW" the module immediately switches over to the new protocol without
storing anything in Flash Memory. Without "NOW" only a DataFlash entry is
changed. A restart is necessary to activate the new protocol.

Return value ERR_OK (0) if command was accepted
ERR_ARGUMENT (4) if one or more arguments didn't match.

Example

PROT SPI
Sets the active I/O interface to SPI, which will be used after next reboot

Remarks The secondary I/O channels, such as CAN#2 and RS232#2 cannot be used as
primary I/O interface. They can only be used from the scripting language.

 Page: 65

28.05.2014

10.50 READ

READ

Description The READ command can be used to read chunks of data from open files. After
reading a chunk, the file pointer is moved behind that chunk so that a subsequent
READ can get the next few bytes instantly. Read data is sent to the currently
selected I/O interface.

Parameters READ requires two arguments. The first one is a file handle that must already be
opened for reading, and the second, last argument is the number of bytes that
should be read from the file.

Return value ERR_OK (0) if everything's gone well.
ERR_ARGUMENT (4) if the supplied handle is not a valid handle from the file
handle space (0...100).
ERR_NOT_OPEN (28) if the given handle is not assigned to an open file.
ERR_NO_READ (29) if the file is open but has no read access.
ERR_FS_... (13...25) file system errors if the file system runs into trouble while
reading from the file.

Example

READ 1 100
Reads the next 100 byte from a file that is open as handle #1

Remarks If the file pointer has advanced behind the last byte, READ returns ERR 33 (End of
File). Before READ can be used, the file must be opened. See also OPEN.

10.51 RECM

RECM

Description This command can change settings regarding to the "Recovery Mode". Recovery
Mode provides a way to capture modules over the network if they were
misconfigured or some settings are forgotten. For this purpose, the module starts
with default settings when powered on and remains there for a few seconds.
While beeing in recovery mode, the module listens for certain UDP messages. If it
receives one, it remains in recovery mode and can be re-configured over the
network.

Parameters The RECM command requires one argument which is one of the keywords ON,
OFF or LISTEN:
ON
Recovery Mode is fully enabled. This means that the module switches to recovery
mode on startup and sends recovery beacons that can be detected by a listener
program to lock the module. The module also listens for UDP messages that can
cause it to remain in recovery mode.
LISTEN

 Page : 66 28.05.2014

This is the listen-only recovery mode. The module doesn't send recovey beacons
but is still sensitive to UDP messages.
OFF
For maximum security, recovery mode is completely switched off. The module
starts directly with the stored settings.

Return value ERR_OK (0) if command was accepted
ERR_ARGUMENT (4) if argument was neither ON, OFF nor LISTEN

Example

RECM OFF
No recovery mode.

Remarks Switching off recovery mode might be risky because misonfigured module are
locked out forever. On the otehr hand, the simplest way to prevent hijacking is to
disable recovery mode. Also active recovery mode increases boot-up time. In the
default configuration (factory settings), recovery mode is enabled.

10.52 RECM?

RECM?

Description The command RECM? can be used to query the actual Recovery Mode setting.
The output is one of the keywords ON, LISTEN or OFF. Please see the description
above.

Parameters

Return value

Example

Remarks

 Page: 67

28.05.2014

10.53 RESTART

RESTART

Description The module can be rebooted with the RESTART command. Open files and TCP
connections are closed, all components are shut down and the module performs
a "warm start".

Parameters If RESTART is trailed with the optional argument CLEAR, all stored configuration
entries are overwritten with factory settings. Therefore, use RESTART CLEAR only
when your module is extremely misconfigured.

Return value None, because the module performs a restart.

Example

RESTART
Immediately restarts the module

Remarks The module does all the things as it was powered up, including execution of
autostart files and running a BASIC skripts.

10.54 RS
RS

Description The RS command allows random read access of raw sectors of an SD card or USB
stick. The storage device does not need to be formatted.

Parameters RS requires a single argument that is the sector number. After the command was
invoked, the module sends back 512 bytes which is the content of the requested
sector.

Return value ERR_OK (0) if sector was read successfully.
ERR_FR_NOT_READY (13) if disk read operation failed.

Example

RS 1234
Read sector 1234

Remarks Sector contents are delived as raw binary data.

 Page : 68 28.05.2014

10.55 RS232

RS232

Description Change settings of the primary RS232 interface

Parameters Five arguments are required. A sixth, optional argument can be used to change
the operating mode.
Baudrate
Valid rates: 300, 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200, 230400,
460800
Bits
Number of bits of one data words: 5, 6, 7, 8
Parity
O = odd, E = even, N = none
Stopbits
1 or 2
Flow control
N = none, SW = Xon/Xoff, HW = RTS/CTS
Mode (Optional)
This can be omitted or must be one of the keywords RS485 or RS485INV to switch
the interface into RS485 mode. In RS485 mode, a transceiver chip must be
connected that handles the physical bus. Therefore, the module automatically
toggles a control line that most chips need to switch from RX to TX and vice versa.
If RS485 is given, the Module drives the DTR control line from LOW to HIGH while
sending. When RS485INV is given, that control line behaves inversely, that is, it
goes from HIGH to LOW while sending.
Please Note: If the sixth argument is missing, the interface is switched to standard
RS232 mode.
All arguments must be upper case.

Return value ERR_OK (0) if command was accepted
ERR_ARGUMENT (4) if one or more arguments are wrong

Example

RS232 115200 8 N 1 N
This configures the RS232 interface to use a baudrate of 115200bps, using 8
bits pet character, no parity, one stop bit and now flow control. Because
there's no sixth argument, the inetrface runs in standard RS232 mode.

Remarks All new settings are effective after next reboot. This command only changes
settings for the primary RS232 interface.

 Page: 69

28.05.2014

10.56 RS232 ERRLOG

RS232 ERRLOG

Description This command enables or disables logging of additional RS232 frame information.

Parameters The argument to RS232 ERRLOG can be either ON or OFF. If ERRLOG ON is given,
the RS232 will also log RS232 framing information on input. Every received
character causes a corresponding status byte to be stored in the input buffer that
contains additional information.
The status byte consists of eight bits which mean the following (LSB first):
Bit 0
Not used, Always zero
Bit 1
Set on Overrun error. Overrun errors occur when the input FIFO is full and a new
character arrives
Bit 2
Value of the parity bit (see remarks).
Bit 3
Set on framing error. Incoming serial data does not seem to be valid RS232
frames
Bit 4
Break detected. A Break means that the input line remains zero for the time of a
full frame
Bit 5
Not used, Always zero
Bit 6
Not used, Always zero
Bit 7
Framing error or Parity error

Return value

Example

RS232 ERRLOG ON
Enables logging of error bits.

Remarks The RS232 ERRLOG command first appears in version 4.38. If the value of the
parity bit is needed, the Module must be configured for either odd or even parity.
If the module is not configured for any parity, bit 2 of the status byte will always
be zero.
All new settings are effective after next reboot.

 Page : 70 28.05.2014

10.57 RS232?

RS232?

Description This command prints out all RS232 settings in one single line.
The Output reflects the arguments of the RS232 command (see
above) in the same order. All items are separted by spaces.

  The second to the last item is either RS232, RS485 or
RS485INV. This depends on the last argument of the RS232

command when using 5 or 6 arguments.
The very last item is either NORMAL or ERRLOG. This depends
on the settings made by RS232 ERRLOG (see above).

Parameters

Return value

Example

RS232?
Prints out e.g: 115200 8 N 1 N RS232 NORMAL

Remarks

10.58 RUN

RUN

Description The RUN command starts a BASIC script or can be used to configure BASIC auto-
run settings. RUN can have zero or one argument. Without an argument, the
script is executed immediately.

Parameters No Argument
Starts the currently loaded script
File Name
Starts the script which is stored in a without loading it into the internal flash
memory. Thus, the script is executed temporarily. Remember that file names
must be in the 8.3 format. See the particular meaning of the file name
"temp_run.bas" Mehr here.
WAIT
The BASIC script is executed immediately and the command interface is locked
while the script is running. Commands can not be entered before the the BASIC
script has terminated.
AUTO
The BASIC script is not executed immediately. Instead, the internal non-volatile
auto-run flag is set. If the module is powered off and on or rebooted, the script is
executed and runs in the background.
AUTOWAIT
The BASIC script is not executed immediately. Instead, the internal non-volatile
auto-run flag is set. If the module is powered off and on or rebooted, the script is

 Page: 71

28.05.2014

executed in exclusive mode, that is, the command interface is locked while the
script is running.
MANUAL
The BASIC script is not executed, but the internal auto-run flag is cleared. This
revokes any previous RUN AUTO or RUN AUTOWAIT commands.

Return value ERR_OK (0) if the command was accepted.
ERR_ALREADY_RUNNING (36) if the BASIC script is already active.
ERR_ARGUMENT (4) if the argument was none of the above keywords.

Example

RUN MANUAL
Clears the autostart flag
RUN
Executes the script immediately

Remarks With exception of running a skript directly from a file (see above), a valid BASIC
script must exist in Flash memory in order to be executed. See also the LOAD
(Mehr[more) command.

10.59 SCAN

SCAN

Description The SCAN command can be used to seek the air for nearby WLAN nets. SCAN
actively searches all 14 WLAN channels beginning from CH 1 up to CH 14. SCAN
requires one argument and can have a second, optional one. When SCAN has
finished, a list of all found WLAN nets is sent to the active I/O interface. The
output begins with a single-line number that is the count of the following entries.
Each entry contains space-separated information in the following order:
1. The BSSID, six bytes, 12 hex digits
2. RSSI: A decimal number that is the power of the received radio signal. The
higher this value is, the greater is the probability that the sending station is
nearer than stations with a smaller value.
3. The network type, either B or I, where I stands for IBSS (ad-hoc) and B stands
for BSS (infrastructure) networks.
4. The encryption type, either 0,1,2 or 3. 0 means "no encryption", 1 means WEP,
2 means WPA and 3 means WPA2.
5. The SSID, a variable-length network name of up to 32 characters. Networks
with a hidden SSID are labeled "[no name]".

Parameters The first argument is one of the keywords BSS, IBSS or ANY. If BSS is given, SCAN
only seeks for Access Points. In contrast, IBSS only seeks for ad-hoc networks. If
ANY is given, both Access Points and ad-hoc networks are returned in the list.
The second optional argument determines how many milliseconds SCAN shall
remain in one channel before it switches over to the next channel. The smaller
this value is, the faster the scan finishes but scan results might be incomplete. If
this argument is missing, a default value of 100 is taken.

Return value ERR_REJECTED (12) if SCAN could not start because of low ressources.
ERR_ARGUMENT (4) if one of the arguments was wrong.
ERR_NET_DOWN (39) If the WLAN interface is not active.

Example SCAN ANY

 Page : 72 28.05.2014

Might produce the following output
6
00095bb13202 55 B 0 [no name]
001a4fdc3cb3 67 B 3 Toshiba_APx
001cf084d376 75 B 2 Nagasaki_Medien
001b11fea730 90 B 2 dlink
000c419d2f64 50 B 1 Toshiba_AP
0019700213a3 51 I 0 avisaro

Remarks This feature is new since version 3.48

10.60 SLEEP

SLEEP

Description The SLEEP command puts the module asleep for x seconds. In sleep-mode, most
components of the MCU are suspended to save power. To force a premature
wakeup, one can pull the EINT0 pin low.

Parameters SLEEP can be called with zero or one argument, that is the time in seconds the
module should sleep. After time is up the module awakes and continues to work.
If no argument is given, the module does not wake up automatically. In this case,
the only way to wake it up is a low pulse on the EINT0 pin.

Return value Always ERR_OK (0)

Example

SLEEP 10
Let the module sleep for ten seconds

Remarks SLEEP only affects the MCU and its components. To put a WLAN device into sleep
mode, please see the WLAN command, here.

10.61 SMS

SMS

Description The SMS command exists to send and receive SMS messages over a GSM
network.

Parameters The SMS command requires 1 or 3 arguments.

If the only argument is GET, the output will be the youngest SMS received by the
GSM modem. If there are no messages stored, ERR_REJECTED(8) is returned.
Otherwise a SMS is pulled off the modem and printed out as header an message
body separated by CR/LFs. An SMS can only be read once.

 Page: 73

28.05.2014

If the first argument is SEND, then the second one must be the receipient's
mobile phone number and the third one is the message text. Spaces inside the
message must be coded as 32, because the command interface does not allow
spaces inside arguments.

Return value ERR_OK (0) - if command is accepted
ERR_ARGUMENT (4) - if there's aproblem with the arguments
ERR_REJECTED (12) - if READ or GET fails for any reason
ERR_PARAMCOUNT (3) - If number of argument didn't match

Example SMS SEND 017636175395 Hello\032World!

Remarks This command only exists on modules with FW version 6.05 and above. Also a
GSM modem must be attached to the module.

10.62 SOCKIO

SOCKIO

Description This command changes the settings of the socket I/O interface. Using the socket
I/O interface, one can talk to the module over a TCP/IP connection. This works
similar to a telnet session. The socket I/O interface is sometimes useful as a
replacement for hardware interfaces such as IIC and RS232.

Parameters The only setting currently can be made is the port number.

Return value ERR_OK (0) always. If the argument is greater than 65535, it is wrapped around to
zero (mod 65536).

Example

SOCKIO 15524
This command tells the socket I/O interface to listen on TCP port 15524

Remarks Socket I/O can be enabled using the PROT command.

 Page : 74 28.05.2014

10.63 SOCKIO?

SOCKIO?

Description This command can be used to query the actual SOCKIO settings. SOCKIO? simply
prints out the port number.

Parameters

Return value

Example

Remarks

10.64 SPI

SPI

Description This command can be used to change the SPI slave settings of the module.

Parameters Two arguments are required. The first one is the clock polarity and the second
one is the clock phase. Both arguments can be either 1 or 0. The clock polarity
determines if the clock signal is active high or active low. A 0 as clock polarity
means, that the high clock pulses (the default SPI mode) are used while a 1 means
low clock pulses are used.
The clock phase determines the relationship between the data lines and the clock
line in SPI transfers. If 0, data is sampled on the first clock edge and a transfer
must begin and end with with activation and deactivation of the chip select input.
If 1, data is sampled on the second clock edge. A transfer starts with the first clock
edge and ends with the last sampling edge while the chip select input is active. In
this mode it is possible too keep the chip select input constantly active while
using the SPI.
Here is a list of all possible SPI modes on the Avisaro Module:
Mode 0
- Clock Polarity = 0, Clock Phase = 0, Chip Select must be activated and
deactivated between transfers
Mode 1
- Clock Polarity = 0, Clock Phase = 1, Chip Select must be activated and
deactivated between transfers
Mode 2
- Clock Polarity = 1, Clock Phase = 0, Chip Select can remain active while
transferring multiple bytes
Mode 3
- Clock Polarity = 1, Clock phase = 1, Chip Select can remain active while
transferring multiple bytes

 Page: 75

28.05.2014

Return value ERR_ARGUMENT (4) if one or all of the arguments are neither 0 nor 1
ERR_OK (0) if the command was accepted

Example

SPI 0 0
Sets the SPI to Mode 0

Remarks To activate the SPI as I/O protocol use the PROT command.

10.65 SPI?

SPI?

Description Reads back SPI settings made by the SPI command. SPI? always prints out two
binary numbers. For details see the description above.

Parameters

Return value

Example

Remarks

10.66 SSTAT

SSTAT

Description This command can be used to query socket information. It sends a list of all
sockets (a snaphshot) to the I/O interface. Also the number of free system-wide
packet buffers is displayed.

Parameters SSTAT? does not require any arguments.

Return value ERR_OK (0) if the command succeeded.
ERR_NET_DOWN (39) if the network is not functioning or disabled

Example

SSTAT?
Could produce the following output
TCP: 200 LSTN 0 0 1000 80 0 -
TCP: 198 LSTN 0 0 1000 21 0 -
TCP: 197 LSTN 0 0 1000 21 0 -
TCP: 0 CLSD 0 0 1000 80 2663 -
TCP: 0 CLSD 0 0 0 0 0 -
TCP: 0 CLSD 0 0 0 0 0 -
TCP: 0 CLSD 0 0 0 0 0 -
TCP: 0 CLSD 0 0 0 0 0 -
TCP: 0 CLSD 0 0 0 0 0 -

 Page : 76 28.05.2014

TCP: 0 CLSD 0 0 0 0 0 -
TCP: 0 CLSD 0 0 0 0 0 -
TCP: 0 CLSD 0 0 0 0 0 -
UDP: 0 OPEN 0 0 0 53 0 -
UDP: 0 CLSD 0 0 0 22122 0 -
UDP: 0 FREE 0 0 0 0 0 -
UDP: 0 FREE 0 0 0 0 0 -
UDP: 0 FREE 0 0 0 0 0 -
UDP: 0 FREE 0 0 0 0 0 -
POOL: 8
The list contains the following information:
1. The number of lines is the total amount of UDP and TCP sockets in the
system.
2. The first entry per line is either UDP or TCP, that is the type of the socket.
In the example above, there are 12 TCP and 6 UDP sockets.
3. The number behind the socket type is a handle number if the socket is
open. If its zero, the socket is free.
4. The next entry is the socket state. For TCP sockets, this can be:
RSRVD - Reserved - The socket is allocated but not yet opened.
CLSD - Closed - The socket is free.
LSTN - Listening - The socket listens for incoming connection attempts.
SYNRC - SYN received - The socket is about to connect.
SYNSN - SYN sent - The socket tries to connect to a remote station.
FW1 - FIN-Wait1 - The socket waits to complete TCP closing sequence.
FW2 - FIN-Wait2 - The socket waits to complete TCP closing sequence.
CLSNG - Closing - The socket is about to close.
LASTACK - Last Ack - The socket waits for the last ack befor it is closing.
TMDWT - Timed wait - The socket is about to close (handles FIN retries)
CONN - Connected - The socket is connected. That is the only state where
data transfer is possible.
For UDP sockets the state can be:
FREE - The socket is unused, was never used.
CLSD - The socket is closed.
OPEN - The socket is currently in use.
5. The next two numbers are the number of packet buffer that the socket
currently holds. The first number shows how many packets are in the
socket's receive list, while the second number is the amount of packets in
the transmit list.
6. The next two numbers are the port numbers for that socket. First comes
the local port and the second number is the remote port number
7. The last information in each line (shown as - in the example above)
indicates the binding. If the socket is bound to a specific interface, either
WLAN or ETH is displayed. If the socket is not bound, a minus sign is shown.
8. Finally, after all socket entries, the output ends with a single line that
shows how many free packet buffers the memory pool has.

Remarks SSTAT? is only useful on modules that have a network interface.

 Page: 77

28.05.2014

STOP

Description The STOP command can be used to halt a running BASIC script. But this only
works if the script does not control the current I/O interface's input.

Parameters STOP can be called without or with a single argument. If there's no argument,
STOP sends a signal to the scripting engine subsystem and returns immediately.
As soon as possible, the scripting engine then terminates the running BASIC
program. If an argument is given, it must be the keyword WAIT. STOP WAIT waits
up to ten seconds until the script really terminated.

Return value ERR_OK (0) if the command was accepted.
ERR_ARGUMENT (4) if the optional argument was not the keyword "WAIT".
ERR_NOT_RUNNING (37) if STOP was invoked while there was no BASIC program
running.
ERR_ALREADY_RUNNING (36) if STOP WAIT was invoked but the program didn't
terminate within ten seconds.

Example

STOP WAIT
Try to stop a running BASIC script and wait until that script terminates

Remarks If the I/O interface is not available or controlled by a running script, it is possible
to stop the script by using the command page http://moduleaddress/cmd of the
web interface.

STOREAGE

Description This command can be used to change the storage device that the module uses.
Currently, there are two media types supported, SD-Cards and USB Flash Drives
(USB Sticks).

Parameters STORAGE requires one of two arguments:
SD
Selects SD-Cards.
USB
Selects USB flash drives.

Return value ERR_ARGUMENT (4) if the arguments is not invalid
ERR_OK (0) if the command is accepted
See (Mehr here) for complete list of error codes.

Example

STORAGE USB
Selects USB Flash Drive as storage media.

 Page : 78 28.05.2014

Remarks This command exists since version 4.49. The module must be rebooted for this
command to take effect. STORAGE command only makes sense on modules that
are equipped with appropriate hardware to access the selected media.
CAUTION: Because there is no defined default storage media, changes made by
STORAGE cannot be reverted using RESTART CLEAR or other ways to restore
factory settings.

10.67 STPSEQ

 STPSEQ

Description The STPSEQ command can be used to define a new Stop Sequence. A Stop
Sequence is a consecution of characters that is used to cancel various operations
such as streaming mode. If the module finds the Stop Sequence in the data
stream, the current operation is cancelled. If STPSEQ is never invoked, the
module reacts to the default Stop Sequence "+++" (without quotation marks). The
Stop Sequence's maximum length is 15. Longer strings are truncated.

Parameters The new stop sequence.

Return value ERR_OK (0) Always.

Example

STPSEQ 1234
Sets a new stop sequence. "1234" in this case

Remarks You can enter binary values into the stopsequence by using the \abc notation,
where "abc" is a three-digit decimal value from 000 to 255.

STREAM

Description This command can be used to enable so-called "streaming" to and from an open
file, TCP connection, UDP channel, standard or auxiliary I/O interface.

Parameters STREAM needs one or two arguments. The first argument is the object (e.g. a file
handle) that should be streamed. The streaming direction is determined by the
capabilities of that object and how it was opened. The second, optional argument
is the other end of the stream. If it is missing, all streams use the current selected
I/O interface as default source or destination. While a stream is active, the
command interface is blocked until the stream ends because all data has been
transmitted, the stop sequence was found, or an error occurs that breaks the
stream. Not all possible permutations are yet implemented. Those currently
available are listed below:

 Page: 79

28.05.2014

Streaming from the current I/O interface into a file
If a file is opened for writing and after the STREAM command was invoked on this
file, all data from the current I/O interface is streamed into the file. Streaming can
only be cancelled if the stop sequence is inserted into the stream.
Streaming from a file to the current I/O interface
If a file is open for reading and after the STREAM command was invoked on this
file, all data from the file is streamed to the I/O interface. Streaming is cancelled
automatically if the last byte of the file was sent.
Bi-directional streaming to and from a TCP connection
If a TCP connection exists and after the STREAM command was invoked on this
TCP connection, all incoming data from the TCP connection is routed to the I/O
interface. Likewise, data from the I/O interface is sent simultaneously over the
TCP connection. Streaming is cancelled automatically, when the TCP connection
ends in any way or when a stop sequence is inserted on the I/O interface. If the
socket is configured for TX delay, data is retarded for the specified time to collect
bigger packets for better bandwidth utilization.
Bi-directional streaming to and from a UDP channel
If a UDP channel is open and after the STREAM command was invoked on this
channel, all incoming data from the UDP channel is routed to the I/O interface.
Data from the I/O interface can be sent simultaneously over the UDP channel.
Because UDP is not connection oriented, the stream kan only be broken when a
stop sequence is inserted on the I/O interface. If the socket is configured for TX
delay, data is retarded for the specified time to collect bigger packets for better
bandwidth utilization.
Streaming from the auxiliary RS232 interface into a file
If a file is opened for writing and after the STREAM command was invoked on this
file using -4 as the second argument, all data from the auxiliary RS232 interface is
streamed into the file. Streaming can only be cancelled if the stop sequence is
inserted into the stream.
Streaming from the auxiliary IIC interface into a file
If a file is opened for writing and after the STREAM command was invoked on this
file using -5 as the second argument, all data from the auxiliary IIC interface is
streamed into the file. Streaming can only be cancelled if the stop sequence is
inserted into the stream.
Streaming from the auxiliary IIC interface into a file but omit IIC stop conditions
If a file is opened for writing and after the STREAM command was invoked on this
file using -6 as the second argument, all data from the auxiliary IIC interface is
streamed into the file. Streaming can only be cancelled if the stop sequence is
inserted into the stream.

Return value ERR_OK (0): if a stop sequence was used to cancel the stream, a TCP connection
was gracefully closed or a file has streamed its last byte.
Any other value not equal to zero: An error occured. The meaning depends on
which channels are used for streaming.

Example

STREAM 1
Switch on streaming to or from a file that was opened as handle #1

Remarks A stream can also be interrupted by closing the socket (see CLOSE) using the cmd
page of the web interface: http://moduleaddress/cmd

 Page : 80 28.05.2014

10.68 SHED

 SHED

Description This command can be used to manually alter the scheduling frequency of the
internal RTOS, that is, the time interval when the current task is stopped and
another task gets the processor. SCHED requires one or two arguments.
The default frequency of the scheduler is 50Hz, which means that every task is
allowed to run 20ms before it is stopped and another task is activated. The RTOS
switches tasks in a round-robin manner all tasks get the same time slice.

Parameters . The first argument is the frequency in Hz of the scheduler. Frequencies from 1
Hz to 27 kHz and the magic value 0 are allowed. If 0 is given, time-controlled task
switching is switched off and the RTOS uses cooperative multitasking. If only the
first argument exists, the new frequency is applied immediately after the current
running task's time quantum is exhausted. The scheduler keeps this frequency
until the module is powered off or another SCHED command is invoked.
The second argument, if given, must be the word "FIX". If this argument exists,
the scheduler is not immediately re-configured but rather the frequency is stored
into Flash memory and effective on next reboot.

Return value ERR_OK (0) if command was accepted.
ERR_ARGUMENT (4) if command was rejected due to wrong input

Example

SCHED 0 FIX
This sets the configuration entry in Flash memory to "use coorerative
multitasking"

Remarks

10.69 SHED?

 SHED?

Description This command can be used to query the scheduler settings. SCHED? does not
need any arguments. The output is like this:
200 200
The first number is actual scheduling frequency in Hz.
The second number is the stored scheduling frequency that will be used when the
module starts.

Parameters

Return value

Example

 Page: 81

28.05.2014

Remarks .

 TIM
E

Description With the TIME command one can assign new values to the RTC (Real Time Clock).
For all "Box" and "Cube" products, the RTC is battery backed, thus it keeps the
time even if power is disconnected. The "Modules" requires external supply to
hold time.

Parameters TIME requires six arguments separated by spaces in the following order:
Year: 2000...2099
Month: 1...12
Day: 1...31
Hour: 0...23
Minute: 0...59
Second: 0...59

Return value ERR_OK (0) if the command was accepted.
ERR_ARGUMENT (4) if one of the arguments is out of range.

Example

TIME 2008 10 20 12 13 14
Sets the RTC date to 2008/10/20 and time to 12:13:14

Remarks On Modules without battery or permanent power supply the time is reset to
2000/01/01 00:00:00 at power-on.

 TIME?

Description This command can be used to query the current RTC time of the module. For a
format of this output see the Example below.

Parameters

Return value

Example

TIME?
Might produce these output:
2008/12/10 08:23:44

 Page : 82 28.05.2014

Remarks .

10.70 UDP

 UDP

Description UDP opens a UDP channel, for both, transmission and reception.

Parameters UDP requires at least 4 and can have one or two optional arguments. The
arguments are as following:
1. Handle number
This is the handle (or socket) number of the new UDP channel. Any decimal value
from 201 to 300 is allowed. If UDP succeeds, this number can be used in
subsequent calls where a UDP socket number is required.
2. Outgoing IP address
This the IP address that is used as destination address for outgoing packets.
3. Outgoing port number
This is the port number of the remote socket. A remote UDP must listen on that
socket top receive packets from this module.
4. Incoming port number
This is our port number. A remote UDP must send packets to this port number so
that we can receive them.
5. TX delay value (optional)
This value only affects streaming mode. In streaming mode, small TX packets are
delayed until more data arrives or time elapses. This is a little trick to make bigger
packets and, therefore, better use of network bandwidth.
6. Use checksums or not (optional)
This argument, if given. must be one of the words "ON" or "OFF". ON means that
checksums are generated for outgoing packets, whereas OFF means that no
checksums will be used.

Return value ERR_OK (0) if command was accepted and the new channel is created.
ERR_ARGUMENT (4) if one or more arguments don't match.
ERR_NET_DOWN (39) if command was rejected because the network is just not
functional.
ERR_FILE_OPEN (32) if command was rejected because that handle is already
open by another socket

Example

UDP 201 192.168.0.1 111 222 1000 OFF
Open an UDP channel with handle number 201 that listens on port 222.
Transmissions over this channel will be send to 192.168.0.1,port 111. If
using streaming mode, this socket collects outgoing data for max. 1 second.

Remarks This command only makes sense on modules with a network interface (Ethernet
or WLAN).

 Page: 83

28.05.2014

10.71 UPTIM?

 UPTIM?

Description This command can be used to get the time since the module is switched on (up
time). The output is a simple decimal value that is the uptime in seconds.

Parameters This command does not require any arguments.

Return value ERR_OK(0) Always.

Example

UPTIM?
Could print out:
12545

Remarks UPTIM? uses the RTC but a battery is not required. UPTIM? keeps running when
the module is sleeping. It just counts from the point where the module was
powered up.

10.72 VER?

 VER?

Description This simple command prints out the firmware version.

Parameters No arguments required.

Return value ERR_OK (0) Always.

Example

VER?
Prints out e.g:
3.35

Remarks This command works on all type of modules.

10.73 WEB

 WEB

Description WEB can be used to customize the web pages that the module deliveres to the
browser of the user.

Parameters WEB requires a single argument as decimal number which contains 32 bits that
switch some parts of the web pages on and off.
The following list shows the meaning of those bits:
BIT 0: Show Ethernet page

 Page : 84 28.05.2014

BIT 1: Show WLAN page
BIT 2: Show Ethernet IP settings
BIT 3: Show WLAN IP settings
BIT 4: Show data interface pages
BIT 5: Webserver expert mode
BIT 6: Show FTP server page
BIT 7: Scripting expert mode
BIT 8: General expert mode
BIT 9: Show FW download page
BIT 10: Show copyright label
BIT 11 ... 31: Not used

Return value ERR_OK (0) If a single argument was given.
ERR_PARAMCOUNT (3) If zero or more than one arguments were given.

Example

WEB 10
Switches on bit 2 and bit 8 to enable only the WLAN page and the WLAN IP
settings

Remarks By default (factory settings) all pages are visible.

10.74 WLAN

 WLAN

Description The WLAN command can be used to change all of the WLAN settings.

Parameters For each setting, WLAN must be invoked with two arguments, the setting name
and the new value. Here is a list that shows the WLAN command's capabilities in
detail:
WLAN PS ON | OFF
Enables or disables power saving mode. The second argument must be one of the
words ON or OFF. ON switches to power saving mode, whereas OFF switches the
WLAN device to full power mode. In power saving mode, most of the internal
components of the WLAN device are switched on and off repeatedly to reduce
power consumption.
WLAN PASS xxx
Sets the WPA pass phrase. This is a human-readable text that is used to calculate
the master key for the WPA and WPA2 WLAN encryption schemes. The pass
phrase must not exceed 63 characters.
WLAN SSID xxx
Sets the new SSID (network name) for WLAN infrastructure mode. The SSID must
be the same SSID as that of the access point where the module should connected
or the same SSID that is used in the ad-hoc network. The SSID must not exceed 32
characters.
New since firmware version 4.24: Avisaro Modules can use a special notation
*abcde# beginning with an asterisk, a number sign at the end and where a,b,c,d,e

 Page: 85

28.05.2014

are any characters. This can be used to set the 802.11 Network-ID (BSSID) to
0abcde (for Ad-Hoc networks only). In this case, all ad-hoc nodes that have the
same SSID are forcibly brought together. A so configured module does not need
to scan the air for ad-hoc partners and, consequently, can't communicate with
others that use a variable BSSID.
WLAN MODE INFRA | ADHOC
This sets the connection mode to either Ad-Hoc (IBSS) or infrastructure mode.
The second argument must be one of the words INFRA or ADHOC. In
infrastructure mode, WLAN nodes require a master station, the so-called "access
point". In ad-hoc mode, WLAN nodes can interlink without the need for an access
point.
WLAN CHANNEL xxx
This sets the WLAN channel, that means the set of frequencies which are used on
the air. Allowed values are 1...14.
WLAN SECURITY WEP40 | WEP104 | WPAPSK | WPA2PSK | NONE
With this command one can change the encryption scheme that is used to secure
the communication. WEP40 means 40-bit WEP encryption. WEP104 means 104-
bit WEP encryption. WPAPSK means that WPA-TKIP with pre-shared key should
be used and WPA2PSK is WPA-AES with pre-shared key. If you supply NONE no
encryption will be used thus, communication is visible for everyone.
WLAN WEP xxxxxxxxxxxxxxxxxxxxxxxxxx
This sets a new WEP key. A WEP key is a 26-digit long hexadecimal value (104
bits) that is used as key for WEP encryption, if WEP104 is enabled. If WEP40 is
enabled, only the first ten digits (== 40 bits) are valid.
WLAN SLEEP
Puts the WLAN component immediately into "deep sleep" mode, to consume as
little power as possible. In contrast to WLAN PS, this mode does not allow to send
or receive data. Before the component goes to sleep, it is disconnected from the
AP, but all TCP connections are kept open. Deep sleep is a temporary mode, that
means the Avisaro module always has an active WLAN after reboot.
WLAN AWAKE
Wakes up the WLAN from deep sleep mode immediately. After it woke up, the
WLAN reconnects itself to the AP and continues to work. WLAN AWAKE
introduces a one-second delay which is necessary for the WLAN component to
settle down.
WLAN BSSID CLEAR | PIN | xxxxxxxxxxxx
(NEW since version 4.45) Sets a constraint on association. If the BSSID filter is
active, the module only associates to an AP having exactly the same BSSID that
was entered. For example, if you invoke BSSID 001977021385 then the module
only seeks for APs with this BSSID when trying to connect. To remove the
constraint, call BSSID CLEAR. BSSID can be used with the the following arguments:
A 12-digits hexadecimal number
Set the BSSID filter manually. If 000000000000 is used, the filter is switeched off
and the modules is able to connect to any AP.
CLEAR
For convenience, same as BSSID 000000000000. Use this to remove the BSSID
filter.
PIN
BSSID PIN can be used to set the BSSID filter to the BSSID of the currently
connected AP. In order to pin your Avisaro Module to an AP, follow these steps:
1. Invoke BSSID CLEAR to disable any previous filtering

 Page : 86 28.05.2014

2. Restart the module and let it associate to the desired AP.You may invoke the
WLAN? command to verify that the module is connected to the right AP
3. Invoke BSSID PIN.

Return value ERR_OK (0) if the command was accepted.
ERR_ARGUMENT (4) if one ore more arguments didn't match.
ERR_LENGTH (5) if one or more arguments had a wrong length.

Example

WLAN SSID TestAP
WLAN MODE INFRA
WLAN CHANNEL 3
WLAN SECURITY WEP104
WLAN WEP 12345678901234567890aabbcc
This configures the WLAN device to connect to an AP named TestAP on
channel 3, using WEP104 as encryption scheme with the key
0x12345678901234567890aabbcc

Remarks All WLAN settings are effective after next reboot, or if WLAN ist stoppend and
started again.

10.75 WLAN?

 WLAN?

Description Prints WLAN settings and information line-by-line in the following order:
1. The network name, SSID.
2. WLAN mode. This can be either INFRA or ADHOC.
3. Preferred WLAN channel (a scan seeks all channels).
4. WLAN encryption scheme. This can be one of WEP40, WEP104, WPAPSK,
WPA2PSK, NONE.
5. The WEP key as hexadecimal value.
6. Power saving mode. Either ON or OFF.
7. The pass phrase for WPA and WPA2. Encryption keys are based on this.
8. Primary Master Key for WPA or WPA2. This value is calculated automatically by
the module when SSID or pass phrase has changed.
9. Connection state (CONN == Connected, NC == Not Connected).
10. Number of successfully received packets.
11. Number of receive failures (Dropped packets because of errors)
12. Number of successfully transmitted packets.
13. Number of transmit failures.
14. Signal strength of last received packet.
15. Own MAC address. This is a 12-digits hexadecimal number.
16. BSSID of the WLAN where the module currently is attached to. This is a 12-
digits hexadecimal number.

 Page: 87

28.05.2014

17. Also a 12-digits hex number. This is the filter BSSID that can be set with the
WLAN BSSID command. If all digits are zero, the filter is disabled. (NEW since
version 4.45)

Parameters

Return value

Example

WLAN?
Could produce the following output:
Andromeda_AP
INFRA
11
WEP104
12345678901234567890a1b2d3
OFF
IEEE
a687b2429193c66edc7cc10f0e9d3facc0e8ba1d5ed3e8eebe26161ea0ffd2bf
CONN
5169
0
41
0
66
00197002121c
000c419d2f64
000000000000

Remarks .

10.76 WPS

 WPS

Description The WPS command starts the process to automatically receive Wi-Fi
configuration data. WPS is a standard automatic configuration procedure
supported by many Access Point.

Parameters There is only one parameter:

WPS START
Starts the WPS procedure. Usually, a button has to be pushed on the Access Point
to enable WPS mode for 2 minutes. Afterwards, the 'WPS START' command has to
be issued on the Avisaro WLAN Device.
The command is blocking. It takes about 15 seconds for the Avisaro Module to
negotiate the parameters.

Return value ERR_OK (0) if the command was accepted.
ERR_NET(39) net is down = no WPS Access Point in sight.

 Page : 88 28.05.2014

Example

WPS START

This starts the configuration process.

Remarks When using WPS, it usually makes sense to use also the "DHCP CLIENT" setting.

10.77 WRITE

 WRITE

Description Writes a chunk of data into an open file and advances the write pointer so that
another write operation can append new data.

Parameters WRITE requires two arguments. The first one is a handle number from 0 to 100,
that must refer to a file which is already open. The second and last argument is
the data itself, that should be written into the file.

Return value ERR_OK (0) If everything worked as expected.
ERR_ARGUMENT (4) if the handle number was out of range.
ERR_NO_WRITE (30) if the file is open but has read access.
ERR_DISK_FULL (24) if there's not enough room on the disk
ERR_FR_... (13...25) general file system errors if the file system encounters a
problem.

Example

WRITE 1 hello_world
Writes the string "hello_world" into a file that is open as file handle #1

Remarks This command only works modules that have some kind of mass storage (USB or
SD-Card)

10.78 WS

 WS

Description This command can be used to bypass the file system and write directly to a sector
on the SD card or USB stick. The disk does not need to be formatted. WS can also
be used to implement custom file systems.

Parameters This command must be invoked with a single argument that is the sector number
to write, followed by a CR/LF. After that, 512 bytes of arbitrary content must be

 Page: 89

28.05.2014

sent. The command interface is blocked until those 512 bytes are completely
received. Then, data is written to the specified sector and the command interface
is available again.

Return value ERR_OK (0) if data is successfully written to the card.
ERR_FR_NOT_READY (13) if write operation failed.

Example

WS 1000
aaaaaaa....
512 bytes of 'a' in total, this fills sector 1000 with the character 'a'

Remarks Be carful when writing with this command to formatted disks. It can damage or
completely destroy the filesystem.

